We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}.
View Article and Find Full Text PDFWe present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{μ}≡(g_{μ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring.
View Article and Find Full Text PDFThe MuCap experiment at the Paul Scherrer Institute has measured the rate Λ(S) of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultrapure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay.
View Article and Find Full Text PDFWe report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays.
View Article and Find Full Text PDFThe spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.
View Article and Find Full Text PDFThe rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.
View Article and Find Full Text PDFThe mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau(micro)=2.197 013(24) micros, is in excellent agreement with the previous world average.
View Article and Find Full Text PDFThe anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon.
View Article and Find Full Text PDFA higher precision measurement of the anomalous g value, a(mu)=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron, based on data collected in the year 2000. The result a(mu(+))=11 659 204(7)(5)x10(-10) (0.7 ppm) is in good agreement with previous measurements and has an error about one-half that of the combined previous data.
View Article and Find Full Text PDFA precise measurement of the anomalous g value, a(mu) = (g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu+) = 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data.
View Article and Find Full Text PDFPhys Rev D Part Fields
March 1988