The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions.
View Article and Find Full Text PDFHigh-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization.
View Article and Find Full Text PDFThe dynamics of cubo-octahedral nanodiamonds (NDs) with three different surface treatments and confined in aqueous environments between gold surfaces under shear and normal loading conditions have been characterized via molecular dynamics (MD) simulations. The treatments consisted of carboxyl (-COO) or amino (-NH ) groups attached to the NDs, producing either negatively or positively charged NDs, respectively, and hydrogen-terminated surfaces producing neutral NDs. Simulations were performed in the presence and absence of induced image charges to explore the impact of electrostatic interactions on friction and surface deformation.
View Article and Find Full Text PDFWe report an experimental Quartz Crystal Microbalance (QCM) study of tuning interfacial friction and slip lengths for aqueous suspensions of TiO and AlO nanoparticles on planar platinum surfaces by external electric fields. Data were analyzed within theoretical frameworks that incorporate slippage at the QCM surface electrode or alternatively at the surface of adsorbed particles, yielding values for the slip lengths between 0 and 30 nm. Measurements were performed for negatively charged TiO and positively charged AlO nanoparticles in both the absence and presence of external electric fields.
View Article and Find Full Text PDFHigh-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor-entropy forming ability-for addressing synthesizability from first principles.
View Article and Find Full Text PDFManipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport.
View Article and Find Full Text PDFMolecular dynamics simulations demonstrate that adhesion strengths as a function of charge for aqueous nanodiamonds (NDs) interacting with a gold substrate result from an interdependence of electrostatics and surface functionalization. The simulations reveal a water layer containing Na counterions between a negative ND with surface -COO functional groups that is not present for a positively charged ND with -NH functional groups. The closer proximity of the positive ND to the gold surface and the lack of cancelation of electrostatic interactions due to counterions and the water layer lead to an electrostatic adhesion force for the positive ND that is nearly three times larger than that of the negative ND.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2015
Discussed in this paper are several theoretical and computational approaches that have been used to better understand the fracture of both single-crystal and polycrystalline diamond at the atomic level. The studies, which include first principles calculations, analytic models and molecular simulations, have been chosen to illustrate the different ways in which this problem has been approached, the conclusions and their reliability that have been reached by these methods, and how these theory and modelling methods can be effectively used together.
View Article and Find Full Text PDFA set of effective chemical potentials (ECPs) are derived that connect energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides calculated at 0 K from density functional theory (DFT) to free energies in high temperature and pressure water. The ECPs are derived and validated by solving a system of linear equations that combine DFT and experimental free energies for NiO, ZnO, Fe2O3, Fe3O4, FeO(OH), CoFe2O4, ZnFe2O4, NiFe2O4 and H2O. To connect to solution phase chemistry, a set of ECPs are also derived for solvated Ni(2+), Zn(2+), Fe(2+) and Fe(3+) ions using an analogous set of linear equations and the solid ECPs.
View Article and Find Full Text PDFThe effectiveness of modified nanodiamonds (NDs) for the adsorption of mycotoxins, aflatoxin B1 (AfB1) and ochratoxin A (OTA), are investigated in this paper. Binding and release mechanisms of the mycotoxins were addressed using an assortment of NDs modified by different surface treatments, including carboxylation, hydrogenation and hydroxylation, followed by isolating NDs of different sizes. Results indicate that AfB1 adsorption on NDs is directly related to aggregate size, whereas OTA adsorption is primarily centered upon electrostatic interactions that depend on the types of surface functional groups on the ND.
View Article and Find Full Text PDFResponsive polymers attached to the inside of nano/micro-pores have attracted great interest owing to the prospect of designing flow-control devices and signal responsive delivery systems. An intriguing possibility involves functionalizing nanoporous materials with smart polymers to modulate biomolecular transport in response to pH, temperature, ionic concentration, light or electric field. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.
View Article and Find Full Text PDFWe present a detailed analysis of the self-propulsion of a model nanometer-scale motor by reactive molecular dynamics simulations. The nanomotor is decorated with catalysts on only one side that promotes exothermic reactions of the surrounding fuel. Unidirectional drift of the nanomotor is observed that is superimposed on its Brownian motion.
View Article and Find Full Text PDFMolecular dynamics simulations are used to model the shock loading of an interface with various degrees of nanometer scale faceting between an inert binder and an energetic crystal. The facets create regions of local compression that induce exothermic reaction that leads to local hotspots and an increased shock sensitivity to detonation. Two mechanisms for compression and hotspot formation are identified that depend on the shock impedance mismatch between the binder and energetic crystal, namely shock focusing and local compression of the facets.
View Article and Find Full Text PDFWe present simulations of a model molecular solid of nitrogen cubane subject to thermal agitation and mechanical shock. A new approach, a reactive state summation potential, has been used to model nitrogen cubane dissociation. At elevated temperatures, the system decomposes to N(2) mixed with a small amount of oligomeric nitrogen.
View Article and Find Full Text PDFAn analytic multiscale expression is derived that yields conditions for effective liquid lubrication of oscillating contacts via surface flow over multiple time and length scales. The expression is a logistics function that depends on two quantities, the fraction of lubricant removed at each contact and a scaling parameter given by the logarithm of the ratio of the contact area to the product of the lubricant diffusion coefficient and the cycle time. For industrial machines the expression confirms the need for an oil mist.
View Article and Find Full Text PDFWe have observed that when mobile adsorbed films of benzene, tricresyl phosphate, and tertiary-butyl phenyl phosphate are present on the surface electrode of a quartz crystal microbalance (QCM), oscillation of the QCM produces clearer scanning tunneling microscope (STM) images of the electrode surface. This is in contrast to an immobile overlayer of iodobenzene, where oscillation of the QCM does not affect image quality. This observation is attributed to a "windshield wiper effect", where at MHz frequencies the tip motion maintains a region of the surface where the absorbate concentration is reduced, which leads to a clearer image.
View Article and Find Full Text PDFThermal conductivities of diamond nanorods are estimated from molecular simulations as a function of radius, length, and degree of surface functionalization. While thermal conductivity is predicted to be lower than carbon nanotubes, their thermal properties are less influenced by surface functionalization, making them prime candidates for thermal management where heat transfer is facilitated by cross-links. A scaling relation based on phonon surface scattering is developed that reproduces the simulation results and experimental measurements on silicon nanowires.
View Article and Find Full Text PDFThe diffusion of tricresyl phosphate molecules on an octadecyltrichlorosilane self-assembled monolayer (SAM) was characterized using molecular dynamics simulations. The simulations predict that when placed on the top of a close-packed SAM, the molecules remain mobile on the surface with an isotropic diffusion activation energy of approximately 9 kJ/mol. In contrast, an anisotropic barrier that results from chain tilt within the SAM is predicted for diffusion into a defect created by reducing the alkane chain length within a cylinderical region of the surface.
View Article and Find Full Text PDFWe present a new theoretical strategy, ab initio rate constants plus integration of rate equations, that is used to characterize the role of entropy in driving high-temperature/low-pressure hydrocarbon chemical kinetics typical of filament-assisted diamond growth environments. Twelve elementary processes were analyzed that produce a viable pathway for converting methane in a feed gas to acetylene. These calculations clearly relate the kinetics of this conversion to the properties of individual species, demonstrating that (1) loss of translational entropy restricts addition of hydrogen (and other radical species) to unsaturated carbon-carbon bonds, (2) rotational entropy determines the direction of the rate-limiting abstraction reactions, and (3) the overall pathway is enhanced by high beta-scission reaction rates driven by translational entropy.
View Article and Find Full Text PDFPresented are results of molecular dynamics simulations that demonstrate flow gating through a polymer-grafted nanopore as a function of effective solvent quality. Analysis of density and flow profiles from the simulations show that the difference in drag force exerted on the flowing solvent due to different polymer brush configurations produces the effective fluid gating. Shear-induced permeability changes through these nanopores has also been investigated.
View Article and Find Full Text PDFPhys Rev Lett
February 2004
Using a new, parameter-free first principles strategy for modeling sublimation growth, we show that while Al and N2 dominate gas concentrations in AlN sublimation growth chambers under typical growth conditions, N2 is undersaturated with respect to the crystal and therefore cannot be a growth precursor. Instead, our calculations predict that the nitrogen-containing precursors are Al(n)N (n=2,3,4), in stark contrast to assumptions used in all previous modeling studies of this system.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1992