Publications by authors named "DUBROVSKII A"

One of the key physicochemical parameters of polyelectrolyte microcapsules (PMCs) is their buffer capacity (BC). The BC of the microcapsules allows for an assessment of the change in protonation state across the entire polyelectrolyte system, which directly impacts the buffer barrier of PMCs, as well as the stability and physical properties of their shell. However, the buffer capacity of PMCs and their behavior under changes in ionic strength and temperature can differ depending on the type of core used to form the microcapsules.

View Article and Find Full Text PDF

There are many studies devoted to the application of polyelectrolyte microcapsules (PMC) in various fields; however, there are significantly fewer studies devoted to the study of the polyelectrolyte microcapsules themselves. The study examined the mutual arrangement of the polyelectrolytes in 13-layered PMC capsules composed of (PAH/PSS)PAH. The research showed that different layers of the polyelectrolyte microcapsules dissociate equally, as in the case of 13-layered PMC capsules composed of (PAH/PSS)PAH with a well-defined shell, and in the case of 7-layered PMC capsules composed of (PAH/PSS)PAH, where the shell is absent.

View Article and Find Full Text PDF

Phenols are widely used in industries despite their toxicity, which requires governments to limit their concentration in water to 5 mg/L before discharge to the city sewer. Thus, it is essential to develop a rapid, simple, and low-cost detection method for phenol. This study explored two pathways of peroxidase immobilization to develop a phenol detection system: peroxidase encapsulation into polyelectrolyte microcapsules and peroxidase captured by CaCO.

View Article and Find Full Text PDF

Anthropogenic activity negatively affects the environment by polluting it with the salts of various metals. One of the ways to reduce this influence is to use water purification methods for the salts of various metals. Water purification methods based on nanomaterials are promising.

View Article and Find Full Text PDF

Mixed Co-Ni bimetallic systems with the structure of a solid substitution solution have been synthesized using the supercritical antisolvent precipitation (SAS) method, which uses supercritical CO as an antisolvent. The systems obtained have been characterized in detail using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared (FTIR) spectroscopy, and magnetostatic measurements. It has been found that Co-enriched systems have a defective hexagonal close-packed (hcp) structure, which was described by a model which embedded cubic fragments of packaging into a hexagonal close-packed (hcp) structure.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules are used in the development of new forms of targeted delivery systems, self-healing materials, sensors, and smart materials. Nevertheless, their buffer capacity has not been practically studied, although that characteristic makes it possible to estimate the change in the state of protonation of the entire polyelectrolyte system. This is necessary both for creating a buffer barrier system for pH-sensitive compounds (metals, enzymes, polyelectrolytes, drugs) and for the correct interpretation of the results of research and studying of the PMC structure.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules (PMCs) are used in the development of new forms of drugs, coatings and diagnostic systems. Their buffer capacity, depending on the conditions of the medium, has not been practically studied, although it can affect the structure of both the capsule itself and the encapsulated agents. In this connection, we studied the buffer capacity of polyelectrolyte microcapsules of the composition (polystyrene sulfonate/polyallylamine) ((PSS/PAH)) depending on the concentration and the type of salt in solution, as well as the microcapsule incubation temperature.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules can be applied as microcontainers for the delivery of a wide range of substances, and it is important to search for new methods for capsule destruction and releasing substances from them. In this work, we studied the possibility of using sodium dodecyl sulfonate (SDS) for the release of fluorescein isothiocyanate-dextran from six-layer microcapsules composed of PAH and PSS. It was shown that the presence of SDS in the medium, at a concentration of 3000 μg/ml, leads to the destruction of polyelectrolyte microcapsules and the release of the substance from them (54% of the amount of the encapsulated substance), while the main part of the FITC-dextran released during the first hours of incubation.

View Article and Find Full Text PDF

Antimicrobial resistance is a global public health threat. One of the possible ways to solve this problem is phage therapy, but the instability of bacteriophages hinders the development of this approach. A bacteriophage delivery system that stabilizes the phage is one of the possible solutions to this problem.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS) is the most widely used anionic surfactant. Its frequent use causes environmental pollution and negative effects on living organisms (even at low concentrations ≈ 20 μg/ml). Thus, cheap and fast methods are needed to detect this surfactant in wastewater and surface waters in order to prevent the negative effects of SDS on the environment and human beings.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) in the brain is a risk factor for Alzheimer's disease (AD). Therefore, new strategies for the stimulation of Aβ clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules, which are obtained by the method of alternate adsorption of oppositely charged polyelectrolytes onto colloidal particles of micron size, are widely used in science and industry. Nevertheless, the properties of microcapsules are still poorly understood. In particular, there is no information in the literature on the buffer capacity.

View Article and Find Full Text PDF

In this work, the mutual arrangement of polyelectrolytes of multilayer polyelectrolyte microcapsules (with layers-[PAH/PSS]PAH) by determination of the dissociation level of polyallylamine (PAH) from the surface of a polyelectrolyte microcapsules (PMC) of various types was studied: PMC with a dissolved CaCO core after preparation, PMC with an undissolved CaCO core and PMC with an encapsulated protein. It was concluded that the polyelectrolyte layers are mixed in the entire shell of the capsules with a dissolved CaCO core. In the case of the PMC with an undissolved CaCO core, such mixing of polyelectrolyte layers does not occur.

View Article and Find Full Text PDF

Phage therapy is a great alternative to antibiotic drugs, but it can't effectively overcome the over-acidic medium of the stomach. We offer the use of polyelectrolyte microcapsules as a protective means of bacteriophage. It is necessary to understand the influence of polyelectrolytes on bacteriophage survival.

View Article and Find Full Text PDF

In this article, the effect of polyallylamine (PAA) on the structure and catalytic characteristics of alcohol dehydrogenase (ADH) was studied. For this research, we used methods of stationary kinetics and fluorescence spectroscopy. It has been shown that PAA non-competitively inhibits ADH activity while preserving its quaternary structure.

View Article and Find Full Text PDF

One of the prerequisites of successful address delivery is controlling the release of encapsulated drugs. The new method of bacterial spore encapsulation in polyelectrolyte microcapsules allows for degrading the nanoscale membrane shell of microcapsules. The possibility of encapsulating spore forms of Bacillus subtilis in polystyrenesulfonate sodium/ polyallylamine hydrochloride (PSS/PAH) polyelectrolyte microcapsules was demonstrated.

View Article and Find Full Text PDF

We studied the effect of different concentrations of polyelectrolytes poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) as well as the effects of microcapsules coated with these polymers on survival of Ehrlich ascites carcinoma cells and mouse peritoneal macrophages and on ROS production by phagocytes. PAH reduced viability of Ehrlich ascites carcinoma in a concentration-dependent manner (LD=12-15 μg/ml). This effect was presumably determined by its ability to bind phosphates, thereby depleting the culture medium.

View Article and Find Full Text PDF

Relationship between changes in the erythrocyte sedimentation rate in rats and concentration and charge of polyelectrolyte microcapsules was studied by the Panchenkov method. Positively charged microcapsules reduced erythrocyte sedimentation rate in a concentrationdependent manner. This effect was related to a decrease in the content of high-molecularweight proteins in the plasma due to their adsorption in positively charged microcapsules with polyacrylamide surface layer.

View Article and Find Full Text PDF

Distribution of bovine serum albumin and ferritin inside polyelectrolyte microcapsules was studied by transmission electron and confocal microscopy at the pH range 2-5. It was estimate that protein's distribution depends on isoelectric point (pI) and first polyelectrolyte used for preparation of capsule shell. So peptide is placed in the bulk of capsule if pH values of medium are lower isoelectric point of protein and polycation was used as a first polyelectrolyte layer.

View Article and Find Full Text PDF

Using the methods of light scattering and optical microscopy, data on the thermosensitivity of hollow microcapsules generated by alternative layers of poly(allylamine) and poly(sterenesulfonate) polyelectrolyte and microcapsules with included polyelectrolyte complexes and proteins have been obtained. It has been shown that all three types of capsules shrink with increasing temperature and the time interval of thermal influence, and their diameter decreases. The thermosensitivity has been estimated by means of the temperature factor of shell shrinkage (Ec).

View Article and Find Full Text PDF

Crystals of the bis(ethylenedithio)tetraselenafulvalene (BETS) radical cation salt with dicyanamidomanganate(II) anion, kappa-(BETS)2Mn[N(CN)2]3, were synthesized, which combine conducting and magnetic properties at ambient pressure and are superconducting (Tc approximately/= 5 K) at a moderate pressure of 0.3 kbar.

View Article and Find Full Text PDF

The incapsulation of proteins into polyelectrolyte microcapsules (PE-microcapsules) has been studied with the aim to develop microdiagnostica for the presence of low-molecular-weight compounds in native biological fluids. The problem was solved using two enzymes: lactate dehydrogenase and urease. Polyelectrolyte microcapsules were prepared using two polyanions: polystyrene sulfonate (PSS) and dextran sulfate (DS), and two polycations: polyallylamine (PAA) and polydiallylmethylammonium (PDADMA).

View Article and Find Full Text PDF

Electron micrographs of ultrathin sections of polyelectrolyte microparticles containing protein and free from protein for the formation of which CaCO3 spherulites served as a core basis have been obtained and analyzed. Polyelectrolyte microparticles with the number of alternately layered polyelectrolyte layers of polystyrene sulfonate and polyallylamine from 6 to 11 have been studied. It follows from the data obtained that protein-free polyelectrolyte particles having the dimensions 4.

View Article and Find Full Text PDF

A nonmonotonous dependence of luminescence intensity of aqueous solutions of 0.1 M glycine and its N-methyl derivatives on the number of methyl groups in the solute molecule was found. A correlation between luminescence intensities and optical density at the excitation wavelength of 300 nm was revealed.

View Article and Find Full Text PDF