Mantle upwelling is essential to the generation of new oceanic crust at mid-ocean ridges, and it is generally assumed that such upwelling is symmetric beneath active ridges. Here, however, we use seismic imaging to show that the isotropic and anisotropic structure of the mantle is rotated beneath the East Pacific Rise. The isotropic structure defines the pattern of magma delivery from the mantle to the crust.
View Article and Find Full Text PDFTomographic images of upper mantle velocity structure beneath an overlapping spreading center (OSC) on the East Pacific Rise indicate that this ridge axis discontinuity is underlain by a continuous region of low P-wave velocities. The anomalous structure can be explained by an approximately 16-kilometer-wide region of high temperatures and melt fractions of a few percent by volume. Our results show that OSCs are not necessarily associated with a discontinuity in melt supply and that both OSC limbs are supplied with melt from a mantle source located beneath the OSC.
View Article and Find Full Text PDFRelative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%.
View Article and Find Full Text PDFThe two-dimensional P-wave attenuation structure of the axial crust of the East Pacific Rise was obtained from an inversion of waveform spectra collected during an active-source seismic tomography experiment. The structure shows that attenuation near the surface is high everywhere but decreases markedly within 1 to 3 kilometers of the rise axis. The near-axis variation is attributed to the thickening of the surface basalt layer and possibly to in situ changes in porosity related to hydrothermal circulation.
View Article and Find Full Text PDF