Publications by authors named "DR Clarke"

Helical structures are ubiquitous in nature and impart unique mechanical properties and multifunctionality. So far, synthetic architectures that mimic these natural systems have been fabricated by winding, twisting and braiding of individual filaments, microfluidics, self-shaping and printing methods. However, those fabrication methods are unable to simultaneously create and pattern multimaterial, helically architected filaments with subvoxel control in arbitrary two-dimensional (2D) and three-dimensional (3D) motifs from a broad range of materials.

View Article and Find Full Text PDF

Dielectric elastomer actuators (DEAs) are electrically driven soft actuators that generate fast and reversible deformations, enabling lightweight actuation of many novel soft robots and haptic devices. However, the high-voltage operation of DEAs combined with the paucity of soft, small high-voltage microelectronics has limited the number of discrete DEAs that can be incorporated into soft robots. This has hindered the versatility as well as complexity of the tasks that they can perform which, in practice, depends on the number of independently addressable actuating elements.

View Article and Find Full Text PDF

Aquatic biotelemetry increasingly relies on using acoustic transmitters ('tags') that enable passive detection of tagged animals using fixed or mobile receivers. Both tracking methods are resource-limited, restricting the spatial area in which movements of highly mobile animals can be measured using proprietary detection systems. Transmissions from tags are recorded by underwater noise monitoring systems designed for other purposes, such as cetacean monitoring devices, which have been widely deployed in the marine environment; however, no tools currently exist to decode these detections, and thus valuable additional information on animal movements may be missed.

View Article and Find Full Text PDF

Dielectric elastomer actuators (DEAs) are among the fastest and most energy-efficient, shape-morphing materials. To date, their shapes have been controlled using patterned electrodes or stiffening elements. While their actuated shapes can be analyzed for prescribed configurations of electrodes or stiffening elements (the forward problem), the design of DEAs that morph into target shapes (the inverse problem) has not been fully addressed.

View Article and Find Full Text PDF

With advances in mobile computing and virtual/augmented reality technologies, communicating through touch using wearable haptic devices is poised to enrich and augment current information delivery channels that typically rely on sight and hearing. To realize a wearable haptic device capable of effective data communication, both ergonomics and haptic performance (i.e.

View Article and Find Full Text PDF

Structurally colored materials can switch colors in response to external stimuli, which makes them potentially useful as colorimetric sensors, dynamic displays, and camouflage. However, their applications are limited by the angular dependence, slow response, and absence of synchronous control in time and space. In addition, out-of-plane deformation from shape instability easily occurs in photonic films, leading to inhomogeneous colors in photonic-crystal materials.

View Article and Find Full Text PDF

Covalent adaptive networks combine the advantages of cross-linked elastomers and dynamic bonding in a single system. In this work, we demonstrate a simple one-pot method to prepare thiol-ene elastomers that exhibit reversible photoinduced switching from an elastomeric gel to fluid state. This behavior can be generalized to thiol-ene cross-linked elastomers composed of different backbone chemistries (e.

View Article and Find Full Text PDF

Dielectric elastomer actuators exhibit an unusual combination of large displacements, moderate bandwidth, low power consumption, and mechanical impedance comparable with human skin, making them attractive for haptic devices. In this article, we propose a wearable haptic communication device based on a two-by-two array of dielectric elastomer linear actuators. We briefly describe the architecture of the actuators and their mechanical and electrical integration into a wearable armband.

View Article and Find Full Text PDF

Flying insects capable of navigating in highly cluttered natural environments can withstand in-flight collisions because of the combination of their low inertia and the resilience of their wings, exoskeletons and muscles. Current insect-scale (less than ten centimetres long and weighing less than five grams) aerial robots use rigid microscale actuators, which are typically fragile under external impact. Biomimetic artificial muscles that are capable of large deformation offer a promising alternative for actuation because they can endure the stresses caused by such impacts.

View Article and Find Full Text PDF

Background: The completeness and accuracy of data contained within clinical databases and registries is critical to the reliability of reports emanating from these platforms. Therefore, vigorous data verification processes are a core competency of any mature database or registry. The Society of Thoracic Surgeons Congenital Heart Surgery Database (STS CHSD) has conducted audits of participant data for just over ten years.

View Article and Find Full Text PDF

Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts.

View Article and Find Full Text PDF

Exceptionally large strains can be produced in soft elastomers by the application of an electric field and the strains can be exploited for a variety of novel actuators, such as tunable lenses and tactile actuators. However, shape morphing with dielectric elastomers has not been possible since no generalizable method for changing their Gaussian curvature has been devised. Here it is shown that this fundamental limitation can be lifted by introducing internal, spatially varying electric fields through a layer-by-layer fabrication method incorporating shaped, carbon-nanotubes-based electrodes between thin elastomer sheets.

View Article and Find Full Text PDF

Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion.

View Article and Find Full Text PDF

Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore's law.

View Article and Find Full Text PDF

A novel method for the fabrication of dielectric elastomer actuators (DEAs) combines acrylic polymers and single wall carbon nanotube network electrodes. DEAs made using this technique do not require prestretching, have extremely thin electrodes, and can be actuated at low voltage. The method is applied to create a multimorph device with nine actuation modes based on just four inputs.

View Article and Find Full Text PDF

Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates.

View Article and Find Full Text PDF

A device for controlling the transmittance of light over large areas, such as windows, is described. It is based on electrostatically induced surface deformation of soft dielectric elastomer sheets produced when a voltage is applied between two networks of electrically conducting nanowires on either side of the elastomer. Variations in the surface curvature are produced by the applied voltage refract light, decreasing the optical transmittance at all wavelengths.

View Article and Find Full Text PDF

The flat surface of a thin elastomer on a conducting substrate can be deformed by applying an electric field to a percolating network of metallic nanowires randomly dispersed over the surface. The magnitude of the field-induced surface undulations increases with the applied field and can locally be several times the diameter of the nanowires. Optical imaging indicates that the effect is reversible and the surface flatness is recovered when the electric field is removed.

View Article and Find Full Text PDF

The use of few stiff fibers to control the deformation of dielectric elastomer actuators, in particular to break the symmetry of equi-biaxial lateral strain in the absence of prestretch, is demonstrated. Actuators with patterned fibers are shown to evolve into unique shapes upon electrical actuation, enabling novel designs of gripping actuators for soft robotics.

View Article and Find Full Text PDF

The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore, the UV intensity increases with the metal nanoparticle concentration, with 60-fold and 17-fold enhancements for the ZnO/Ag and ZnO/Au, core-shell nanoparticles respectively.

View Article and Find Full Text PDF

Aims: Tellurium-based devices, such as photovoltaic (PV) modules and thermoelectric generators, are expected to play an increasing role in renewable energy technologies. Tellurium, however, is one of the scarcest elements in the earth's crust, and current production and recycling methods are inefficient and use toxic chemicals. This study demonstrates an alternative, bacterially mediated tellurium recovery process.

View Article and Find Full Text PDF

A strategy to control the electrical charge is developed to achieve high energy density of soft dielectric elastomer generators for energy harvesting. The strategy is analytically shown and experimentally demonstrated to produce the highest energy density ever reported for a soft generator.

View Article and Find Full Text PDF

Dielectric breakdown measurements were conducted on self-assembled monolayer (SAM)/native silicon oxide hybrid dielectrics using conductive atomic force microscopy (C-AFM). By depositing silane coupling agents (SCAs) through a diffusional barrier layer, SAM roughness was decoupled from chemistry to compare the chemical effects of exposed R-group functionality on dielectric breakdown. Using Weibull and current-voltage (I-V) analysis, the breakdown strength was observed to be independent of SCA R-group length, and the addition of a SAM was seen to improve the breakdown strength relative to native silicon oxide by up to 158%.

View Article and Find Full Text PDF