Publications by authors named "DN Argyriou"

The AMnO delafossites (A = Na, Cu) are model frustrated antiferromagnets, with triangular layers of Mn spins. At low temperatures ( = 65 K), a 2/ → 1̅ transition is found in CuMnO, which breaks frustration and establishes magnetic order. In contrast to this clean transition, A = Na only shows short-range distortions at .

View Article and Find Full Text PDF

The Ising triangular lattice remains the classic test-case for frustrated magnetism. Here we report neutron scattering measurements of short range magnetic order in CuMnO, which consists of a distorted lattice of Mnspins with single-ion anisotropy. Physical property measurements on CuMnOare consistent with 1D correlations caused by anisotropic orbital occupation.

View Article and Find Full Text PDF

AI is no magic dust: for it to become a true discovery accelerator, much work is needed to make it transparent and robust.

View Article and Find Full Text PDF

With the technological development of affordable and impactful laboratory-based tools and their ever-growing scientific scope, large-science facilities need to review their strategies in order to continue to add value for their scientific communities.

View Article and Find Full Text PDF

Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of d-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of d-alanine using neutron powder diffraction, polarized Raman scattering and calculations of harmonic vibrational frequencies were carried out.

View Article and Find Full Text PDF

The leading role in science played by crystallography is heavily dependent on Big-Science facilities. The need for Europe-wide coordination of operational resources in Big Science is discussed with particular reference to neutron sources.

View Article and Find Full Text PDF

We show that the valence electrons of Ba3NaRu2O9, which has a quasimolecular structure, completely crystallize below 210 K. Using an extended Hubbard model, we show that the charge ordering instability results from long-range Coulomb interactions. However, orbital ordering, metal-metal bonding, and formation of a partial spin gap enforce the magnitude of the charge separation.

View Article and Find Full Text PDF

The random fluctuations of spins give rise to many interesting physical phenomena, such as the 'order-from-disorder' arising in frustrated magnets and unconventional Cooper pairing in magnetic superconductors. Here we show that the exchange of spin waves between extended topological defects, such as domain walls, can result in novel magnetic states. We report the discovery of an unusual incommensurate phase in the orthoferrite TbFeO(3) using neutron diffraction under an applied magnetic field.

View Article and Find Full Text PDF

Using soft x-ray diffraction at the Dy-M₅ resonance, pronounced circular dichroism in the ferroelectric phase of DyMnO₃ is observed in connection with sizable b and c components of the Dy-4f magnetic moments. This provides strong evidence for cycloidal order of the 4f moments, corroborating that inversion-symmetry breaking in this material is not accomplished by the Mn spins alone. The 4f circular dichroism allows us to image multiferroic domains that are imprinted on the surface of DyMnO₃ using the local charging by the x-ray beam via the photoelectric effect.

View Article and Find Full Text PDF

The iron chalcogenide Fe(1+y)(Te(1-x)Se(x)) is structurally the simplest of the Fe-based superconductors. Although the Fermi surface is similar to iron pnictides, the parent compound Fe(1+y)Te exhibits antiferromagnetic order with an in-plane magnetic wave vector (pi,0) (ref. 6).

View Article and Find Full Text PDF

Rubidium copper phosphate, RbCuPO(4), forms two room-temperature polymorphs that have been investigated with neutron powder diffraction. Polymorph (II) can be converted quantitatively into (I) by grinding the material or by pelletization, and the phase transition is accompanied by a significant colour change from very pale green to sky blue. Polymorph (II) can be obtained essentially free of (I) by quenching from 723 K.

View Article and Find Full Text PDF
Article Synopsis
  • Charge ordering in overdoped La1-xCaxMnO3 (LCMO) manganites, which are thought to have charge stripes, is now suggested to be organized as a uniform charge density wave based on new experimental findings.
  • Recent research using nuclear magnetic resonance has revealed that the spin ground state in these manganites is in an incommensurate (IC) modulation with phase solitons.
  • At elevated temperatures, this solitonic structure transitions into a uniform spin-density wave that exhibits slow fluctuations similar to those seen in high-temperature superconductors like cuprates and nickelates.
View Article and Find Full Text PDF

Raman and neutron experiments using specific isotope labeling were combined in order to study the dynamics and structure of L-alanine. Inelastic neutron and Raman scattering data of C(2)H(4)(ND(2))CO(2)D are discussed in relation to the doubling of the lattice parameter a observed by means of neutron powder diffraction in C(2)D(4) (NH(2))CO(2)H. The major changes accompanying the phase transition are found in the vibrational frequencies involving the torsional vibration tau(CO(2)(-)), which is clearly affected by the hydrogen bonds between the protons of the ammonium group and the oxygen atoms of the carboxylate group.

View Article and Find Full Text PDF

Charge carriers in low-doped semiconductors may distort the atomic lattice around them and through this interaction form so-called small polarons. High carrier concentrations on the other hand can lead to short-range ordered polarons (large polarons) and even to a long-range charge and orbital order. These ordered systems should be insulating with a large electrical resistivity.

View Article and Find Full Text PDF

Using in-field single-crystal neutron diffraction, we have determined the magnetic structure of TbMnO(3) in the high field P parallel a phase. We unambiguously establish that the ferroelectric polarization arises from a cycloidal Mn spin ordering, with spins rotating in the ab plane. Our results demonstrate directly that the flop of the ferroelectric polarization in TbMnO(3) with applied magnetic field is caused from the flop of the Mn cycloidal plane.

View Article and Find Full Text PDF

The discovery of a new family of high-T(C) materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials.

View Article and Find Full Text PDF

Anomalous low temperature electronic and structural behavior has been discovered in PbRuO3. The structure [space group Pnma, a=5.563 14(1), b=7.

View Article and Find Full Text PDF

Incoherent inelastic neutron scattering experiments were performed on Na0.7CoO2 and Na0.28CoO2.

View Article and Find Full Text PDF

We report on diffraction measurements on multiferroic TbMnO(3) which demonstrate that the Tb- and Mn-magnetic orders are coupled below the ferroelectric transition T(FE) = 28 K. For T View Article and Find Full Text PDF

This work reports neutron diffraction and incoherent neutron scattering experiments on N-methylacetamide (NMA), which can be considered the model building block for the peptide linkage of polypeptides and proteins. Using the neutron data, we have been able to associate the onset of a striking negative thermal expansion (NTE) along the a-axis with a dynamical transition around 230 K, consistent with our calorimetric experiments. Observation of the NTE raises the question of possible proton transfer in NMA, which, from our data alone, still cannot be settled.

View Article and Find Full Text PDF

The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.

View Article and Find Full Text PDF

A first study of possible changes instigated by deuteration in amino acids was carried out using neutron diffraction, inelastic neutron scattering, and Raman scattering in l-alanine, C2H4(NH2)COOH. Careful analysis of the structural parameters shows that deuteration of l-alanine engenders significant geometric changes as a function of temperature, which can be directly related to the observation of new lattice vibration modes in the Raman spectra. The combination of the experimental data suggests that C2D4(ND2)COOD undergoes a structural phase transition (or a structural rearrangement) at about 170 K.

View Article and Find Full Text PDF