Complexation of Pu(iv) with the actinide extractant CyMe-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline) was followed by vis-NIR spectroscopy in acetonitrile solution. The solid-state structure of the crystallized product suggests that Pu(iv) is reduced to Pu(iii) upon complexation. Analysis by DFT modeling is consistent with metal-based rather than ligand-based reduction.
View Article and Find Full Text PDFWe present a theoretical investigation of the properties of quantum correlation functions in a multimode system. We define a total mth order equal-time correlation function, summed over all modes, which is shown to be conserved if the Hamiltonian possesses U(1) symmetry. It is also conserved in the presence of dissipation, provided the loss rate is the same for all modes of the system.
View Article and Find Full Text PDFWe study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates.
View Article and Find Full Text PDFPorous polystyrene microspheres were produced by a process of nonsolvent induced phase separation (NIPS) from ternary polymer-solvent-nonsolvent (polystyrene-toluene-ethanol) systems and characterized by scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) techniques. This study provides evidence for a link between the structural morphology of the porous polystyrene particles and the polystyrene concentration in the initial solutions. A reciprocal relationship between pore diameter and polymer concentration was observed for the systems with the polymer amount below the critical chain overlap concentration, C*.
View Article and Find Full Text PDFWe theoretically demonstrate that Kerr nonlinearity in optical circuits can lead to both resonant four-wave mixing and photon blockade, which can be used for high-yield generation of high-fidelity individual photon pairs with conjugated frequencies. We propose an optical circuit, which, in the optimal pulsed-drive regime, would produce photon pairs at the rate up to 5 × 10 s (0.5 pairs per pulse) with [Formula: see text] for one of the conjugated frequencies.
View Article and Find Full Text PDFWe report the experimental investigation and theoretical modeling of a rotating polariton superfluid relying on an innovative method for the injection of angular momentum. This novel, multipump injection method uses four coherent lasers arranged in a square, resonantly creating four polariton populations propagating inwards. The control available over the direction of propagation of the superflows allows injecting a controllable nonquantized amount of optical angular momentum.
View Article and Find Full Text PDFWe report an extended family of spin textures of zero-dimensional exciton-polaritons spatially confined in tunable open microcavity structures. The transverse-electric-transverse-magnetic (TE-TM) splitting, which is enhanced in the open cavity structures, leads to polariton eigenstates carrying quantized spin vortices. Depending on the strength and anisotropy of the cavity confining potential and of the TE-TM induced splitting, which can be tuned via the excitonic or photonic fractions, the exciton-polariton emissions exhibit either spin-vortex-like patterns or linear polarization, in good agreement with theoretical modeling.
View Article and Find Full Text PDFEurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm.
View Article and Find Full Text PDFThe complexation of Cm(III) and Eu(III) with 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bipyridine (CyMe4-BTBP) in methanolic solution was investigated by TRLFS. For both ligands, the 1:2 complex with the particular metal ion is the only species observed in equilibrated samples. The species distribution for various ligand concentrations was determined and stability constants of the 1:2 complexes were derived (log β2 = 13.
View Article and Find Full Text PDFLanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand.
View Article and Find Full Text PDFWe investigate the energy splitting, quality factor and polarization of the fundamental modes of coupled L3 photonic crystal cavities. Four different geometries are evaluated theoretically, before experimentally investigating coupling in a direction at 30◦ to the line of the cavities. In this geometry, a smooth variation of the energy splitting with the cavity separation is predicted and observed, together with significant differences between the polarizations of the bonding and anti-bonding states.
View Article and Find Full Text PDFMost conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering.
View Article and Find Full Text PDFWe study nonequilibrium polariton superfluids in the optical-parametric-oscillator regime by using a Gross-Pitaevskii equation with pumping and decay. We identify a regime above the optical-parametric-oscillator threshold, where the system undergoes spontaneous symmetry breaking and is unstable towards vortex formation without any rotating drive. Stable vortex solutions differ from metastable ones; the latter can persist but can be triggered only externally.
View Article and Find Full Text PDFA numerical investigation is performed into the diffusive effects of cylinders positioned in front of a Schroeder diffuser. A regular line of cylinders is shown to offer notable improvements to diffusion from a periodic Schroeder device, provided lateral cylinder spacing is incommensurable with the Schroeder period width. Further investigation considers angular dependence and low frequency results in greater detail, as well as the effects on narrowband and modulated Schroeder devices.
View Article and Find Full Text PDFWe demonstrate the creation of vortices in a macroscopically occupied polariton state formed in a semiconductor microcavity. A weak external laser beam carrying orbital angular momentum (OAM) is used to imprint a vortex on the condensate arising from the polariton optical parametric oscillator (OPO). The vortex core radius is found to decrease with increasing pump power, and is determined by polariton-polariton interactions.
View Article and Find Full Text PDFThe fundamental mechanisms which control the phase coherence of the polariton Bose-Einstein condensate (BEC) are determined. It is shown that the combination of number fluctuations and interactions leads to decoherence with a characteristic Gaussian decay of the first-order correlation function. This line shape, and the long decay times ( approximately 150 ps) of both first- and second-order correlation functions, are explained quantitatively by a quantum-optical model which takes into account interactions, fluctuations, and gain and loss in the system.
View Article and Find Full Text PDFWe study the linear polarization of the emission from single quantum dots embedded in an "L3" defect nanocavity in a two-dimensional photonic crystal. By using narrow linewidth optical excitation in resonance with higher-order modes, we are able to achieve strong quantum dot emission intensity whilst reducing the background from quantum dots in the surrounding lattice. We find that all the dots observed emit very strongly linearly polarized light of the same orientation as the closest mode, despite the fact that these quantum dots may be spectrally detuned by several times the mode linewidth.
View Article and Find Full Text PDFThe emission and transmission properties of realistic photonic-band-structure woodpile lattices are investigated by use of a scattering-matrix treatment. Lattices with three to nine layers are studied, and the results are interpreted with band-structure calculations for an infinite lattice. Calculations of the total radiative loss rate for a source within the lattice show that these structures can provide significant inhibition of emission, with values as low as 3% of the free-space value in the nine-layer structure.
View Article and Find Full Text PDFA compact, high-power emitter of half-cycle terahertz (THz) radiation is demonstrated. The device consists of an epitaxial InAs emitter upon a GaAs prism and produces THz pulses that are 20 times more powerful than those from conventional planar InAs emitters. This improvement is a direct result of reorienting the transient THz dipole such that its axis is not perpendicular to the emitting surface.
View Article and Find Full Text PDFWe model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6.
View Article and Find Full Text PDFThe importance of interaction effects in determining the temporal coherence of spectrally and spatially isolated single modes of the microcavity optical parametric oscillator (OPO) is demonstrated. As a function of macroscopic occupancy, the coherence time (tau c) first increases linearly and then exhibits saturation behavior, reaching maximum values of up to 500 ps. Good agreement is found with a model including fluctuations in polariton number and polariton-polariton interactions between the OPO states.
View Article and Find Full Text PDFWe demonstrate all-optical switching in an active two-dimensional photonic crystal waveguide, observing as large as 16 nm blueshifts of a leaky eigenmode at 839 nm and switching ratios of almost 70%. These results are larger than those previously observed in similar experiments performed on passive photonic crystal waveguides; the enhancement is due to resonant photogeneration of carriers by In(0.12)Al(0.
View Article and Find Full Text PDFThe temperature dependence of spin coherence in InGaAs quantum dots is obtained from quantum beats observed in polarization-resolved pump-probe experiments. Within the same sample we clearly distinguish between coherent spin dynamics leading to quantum beats and incoherent long-lived spin-memory effects. Analysis of the coherent data using a theoretical model reveals approximately 10 times greater stability of the spin coherence at high temperature compared to that found previously for exciton states in four-wave-mixing experiments by Borri et al.
View Article and Find Full Text PDFThe dynamics of the spin-triplet trion state, under high magnetic field in a GaAs/AlGaAs quantum well, are studied using time resolved spectroscopy. The oscillator strength of the triplet transition is shown to rise with increasing electron density, in good agreement with a theoretical model where the trion interacts with excess electrons in the quantum well. This analysis suggests that the spin-triplet trion state, which is expected to be an optically "dark" state, is experimentally observable due to the interactions with the excess electrons, demonstrating that X- cannot be regarded as an isolated three particle complex.
View Article and Find Full Text PDF