We present the first realization of a monolithically integrated piezoelectronic transistor (PET), a new transduction-based computer switch which could potentially operate conventional computer logic at 1/50 the power requirements of current Si-based transistors (Chen 2014 Proc. IEEE ICICDT pp 1-4; Mamaluy et al 2014 Proc. IWCE pp 1-2).
View Article and Find Full Text PDFIn high temperature superconductors, although some phenomena such as the Mott transition (MT) at low doping are clearly driven by electron correlations, recent experimental data imply that anharmonic oxygen degrees of freedom-characteristic of perovskite materials-are playing a significant role. A key test of the role of anharmonic oxygen is to reproduce the complex cuprate phase diagram from a simple model. Here, we show that a field theory based on nonlinear coupling to anharmonic oxygens, parametrized from ab initio calculations, quantitatively reproduces the cuprate phase diagram for dopings above the MT.
View Article and Find Full Text PDFThe piezoelectronic transistor (PET) has been proposed as a transduction device not subject to the voltage limits of field-effect transistors. The PET transduces voltage to stress, activating a facile insulator-metal transition, thereby achieving multigigahertz switching speeds, as predicted by modeling, at lower power than the comparable generation field effect transistor (FET). Here, the fabrication and measurement of the first physical PET devices are reported, showing both on/off switching and cycling.
View Article and Find Full Text PDFSophisticated microelectromechanical systems for device and sensor applications have flourished in the past decade. These devices exploit piezoelectric, capacitive, and piezoresistive effects, and coupling between them. However, high-performance piezoresistivity (as defined by on/off ratio) has primarily been observed in macroscopic single crystals.
View Article and Find Full Text PDFGraphene nanomeshes (GNMs) formed by the creation of pore superlattices in graphene are a possible route to graphene-based electronics due to their semiconducting properties, including the emergence of fractional electronvolt band gaps. The utility of GNMs would be markedly increased if a scheme to stably and controllably dope them was developed. In this work, a chemically motivated approach to GNM doping based on selective pore-perimeter passivation and subsequent ion chelation is proposed.
View Article and Find Full Text PDFField effect transistors are reaching the limits imposed by the scaling of materials and the electrostatic gating physics underlying the device. In this Communication, a new type of switch based on different physics, which combines known piezoelectric and piezoresistive materials, is described and is shown by theory and simulation to achieve gigahertz digital switching at low voltage (0.1 V).
View Article and Find Full Text PDFThe ballistic conductance through junctions between multilayer graphene films and several different metals is studied using ab initio calculations within the local density approximation. The system consists of films of up to four graphene layers (Bernal stacking) between metallic electrodes, assuming reasonable metal-graphene epitaxial relationships. For some metals, the conductance decays exponentially with increasing number of layers, while for others the conductance saturates with film thickness.
View Article and Find Full Text PDFGraphene forms an important two-dimensional (2D) material class that displays both a high electronic conductivity and optical transparency when doped. Yet, the microscopic origin of the doping mechanism in single sheet or bulk intercalated systems remains unclear. Using large-scale ab initio simulations, we show the graphene surface acts as a catalytic reducing/oxidizing agent, driving the chemical disproportionation of adsorbed dopant layers into charge-transfer complexes which inject majority carriers into the 2D carbon lattice.
View Article and Find Full Text PDFPhase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin.
View Article and Find Full Text PDFNanotubes and nanowires with both elemental (carbon or silicon) and multi-element compositions (such as compound semiconductors or oxides), and exhibiting electronic properties ranging from metallic to semiconducting, are being extensively investigated for use in device structures designed to control electron charge. However, another important degree of freedom--electron spin, the control of which underlies the operation of 'spintronic' devices--has been much less explored. This is probably due to the relative paucity of nanometre-scale ferromagnetic building blocks (in which electron spins are naturally aligned) from which spin-polarized electrons can be injected.
View Article and Find Full Text PDFAn alpha-helical bundle composed of four transmembrane portions of the M2 protein from the Influenza A virus has been studied in a hydrated diphytanol phosphatidylcholine bilayer using molecular dynamics (MD) calculations. Experimentally, the sequence utilized is known to aggregate as a four-helix bundle and act as a pH-gated proton-selective ion channel, which is blocked by the drug amantadine hydrochloride. In the presented simulation, the ion channel was initially set up as a parallel four-helix bundle.
View Article and Find Full Text PDFMolecular dynamics simulations have been performed on protonated four-helix bundles based on the 25-residue Duff-Ashley transmembrane sequence of the M2 channel of the influenza A virus. Well-equilibrated tetrameric channels, with one, two and four of the H37 residues protonated, were investigated. The protonated peptide bundles were immersed in the octane portion of a phase-separated water/octane system, which provided a membrane-mimetic environment.
View Article and Find Full Text PDFMolecular dynamics simulations have been performed on a tetramer of the 25-residue (SSDPLVVAASIIGILHLILWILDRL) synthetic peptide [1] which contains the transmembrane domain of the influenza A virus M2 coat protein. The peptide bundle was initially assembled as a parallel alpha-helix bundle in the octane portion of a phase separated water/octane system, which provided a membrane-mimetic environment. A 4-ns dynamics trajectory identified a left-handed coiled coil state of the neutral bundle, with a water filled funnel-like structural motif at the N-terminus involving the long hydrophobic sequence.
View Article and Find Full Text PDFMolecular dynamics calculations have been carried out on a model of the LS3 synthetic ion channel in a membrane mimetic environment. In the absence of an external electrostatic field, the LS3 channel, which consists of a bundle of six alpha-helices with sequence Ac-(LSSLLSL)3-CONH2, exhibits large structural fluctuations. However, in the presence of the field, the bundle adopts a well defined coiled-coil structure with an inner pore of water.
View Article and Find Full Text PDFA molecular dynamics simulation has been performed on a synthetic membrane-spanning ion channel, consisting of four alpha-helical peptides, each of which is composed of the amino acids leucine (L) and serine (S), with the sequence Ac-(LSLLLSL)3-CONH2. This four-helix bundle has been shown experimentally to act as a proton-conducting channel in a membrane environment. In the present simulation, the channel was initially assembled as a parallel bundle in the octane portion of a phase-separated water/octane system, which provided a membrane-mimetic environment.
View Article and Find Full Text PDFPhys Rev B Condens Matter
December 1996
Phys Rev B Condens Matter
July 1993