Publications by authors named "DJ Fulton"

Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NADPH oxidase 2 (NOX2), involving the pneumococcal virulence factor pneumolysin (PLY). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of the epithelial sodium channel (ENaC) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2.

View Article and Find Full Text PDF

The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types.

View Article and Find Full Text PDF

Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia.

View Article and Find Full Text PDF

Angiogenesis plays a vital role for postnatal development and tissue repair following ischemia. Reactive oxygen species (ROS) generated by NADPH oxidases (NOXes) and mitochondria act as signaling molecules that promote angiogenesis in endothelial cells (ECs) which mainly relies on aerobic glycolysis for ATP production. However, the connections linking redox signaling with glycolysis are not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Clearance of damaged mitochondria through mitophagy is essential for cellular function, with RBX2 as a newly identified ubiquitin ligase affecting mitochondrial health, especially in the heart.
  • Depleting RBX2 impairs mitochondrial functions, increases cell death, and leads to heart diseases such as dilated cardiomyopathy due to the accumulation of damaged mitochondria.
  • The study reveals that RBX2 operates independently of Parkin, highlighting its critical role in mitochondrial maintenance and cardiac homeostasis through the stabilization of PINK1.
View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) 9 is a negative regulator of adipogenic differentiation, which is required for maintenance of healthy adipose tissues. We reported that expression is upregulated in adipose tissues during obesity, in conjunction with impaired adipogenic differentiation, adipocyte hypertrophy, insulin resistance, and hepatic steatosis, all of which were alleviated by global genetic deletion of . Here, we developed a novel transgenic (TG) mouse model to test whether overexpression of is sufficient to induce adipocyte hypertrophy, insulin resistance, and hepatic steatosis in the absence of obesity.

View Article and Find Full Text PDF

Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes.

View Article and Find Full Text PDF

A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs).

View Article and Find Full Text PDF

Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese background. Myostatin deletion increases gastrocnemius (Gastrocn.

View Article and Find Full Text PDF

Introduction: Human saphenous veins (SV) are widely used as grafts in coronary artery bypass (CABG) surgery but often fail due to neointima proliferation (NP). NP involves complex interplay between vascular smooth muscle cells (VSMC) and fibroblasts. Little is known, however, regarding the transcriptomic and proteomic dynamics of NP.

View Article and Find Full Text PDF

Objective: Impaired adipogenic differentiation exacerbates metabolic disease in obesity. This study reported that high-fat diet (HFD)-fed mice housed at thermoneutrality exhibited impaired adipogenic differentiation, attributed to increased expression of histone deacetylase 9 (HDAC9). However, the impact of HFD on adipogenic differentiation is reportedly variable, possibly reflecting divergent environmental conditions such as housing temperature.

View Article and Find Full Text PDF

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2 A2 ), myeloid-specific A2 KO (LysM A2), endothelial-specific A2 KO (Cdh5 A2), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells.

View Article and Find Full Text PDF

The detection of superoxide anion (O) in biological tissues remains challenging. Barriers to convenient and reproducible measurements include expensive equipment, custom probes, and the need for high sensitivity and specificity. The luminol derivative, L-012, has been used to measure O since 1993 with mixed results and concerns over specificity.

View Article and Find Full Text PDF

Background: Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown.

Methods: Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI.

View Article and Find Full Text PDF

Background: Obesity is associated with increased risk of cardiovascular disease, but underlying mechanisms remain elusive. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor, but how glucose impacts vascular function is unclear. GAL3 (galectin-3) is a sugar-binding lectin upregulated by hyperglycemia, but its role as a causative mechanism of cardiovascular disease remains poorly understood.

View Article and Find Full Text PDF

Introduction: Inflammation is a key pathogenic feature of abdominal aortic aneurysm (AAA). Soluble epoxide hydrolase (sEH) is a pro-inflammatory enzyme that converts cytochrome P450-derived epoxides of fatty acids to the corresponding diols, and pharmacological inhibition of sEH prevented AAA formation. Both cytochrome P450 enzymes and sEH are highly expressed in the liver.

View Article and Find Full Text PDF

Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure.

View Article and Find Full Text PDF

Rationale: Obesity increases the risk of cardiovascular disease (CVD) through mechanisms that remain incompletely defined. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor but how glucose impacts vascular function is unclear. Galectin-3 (GAL3) is a sugar binding lectin upregulated by hyperglycemia but its role as a causative mechanism of CVD remains poorly understood.

View Article and Find Full Text PDF

Background & Aims: Visceral smooth muscle cells (SMCs) are an integral component of the gastrointestinal (GI) tract that regulate GI motility. SMC contraction is regulated by posttranslational signaling and the state of differentiation. Impaired SMC contraction is associated with significant morbidity and mortality, but the mechanisms regulating SMC-specific contractile gene expression, including the role of long noncoding RNAs (lncRNAs), remain largely unexplored.

View Article and Find Full Text PDF

Aims: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC).

View Article and Find Full Text PDF

Pathological angiogenesis is a major cause of irreversible blindness in individuals of all age groups with proliferative retinopathy (PR). Mononuclear phagocytes (MPs) within neovascular areas contribute to aberrant retinal angiogenesis. Due to their cellular heterogeneity, defining the roles of MP subsets in PR onset and progression has been challenging.

View Article and Find Full Text PDF