Publications by authors named "DJ Booth"

The analysis of how biological shape changes across ontogeny can provide us with valuable information on how species adapt behaviorally, physiologically, and ecologically. The white shark Carcharodon carcharias is one of the largest and most widely distributed apex predators globally, yet an understanding of ontogenetic changes in body shape and relative scaling of length and weight measures is limited, especially in relation to foraging ecology. Through analysis of a suite of shape-related metrics, we identified ontogenetic patterns of scaling throughout development.

View Article and Find Full Text PDF

Ecological similarity plays an important role in biotic interactions. Increased body size similarity of competing species, for example, increases the strength of their biotic interactions. Body sizes of many exothermic species are forecast to be altered under global warming, mediating shifts in existing trophic interactions among species, in particular for species with different thermal niches.

View Article and Find Full Text PDF

Climate-driven species redistributions are facilitated by niche modifications that increase a species's chances of establishment in novel communities. It is well understood how range-extending species adjust individual niche traits when entering novel environments, yet whether modification of ecological niche traits collectively alters the pace of range extensions or contractions remains unknown. We quantified habitat niche, abundance, physiological performance and cellular defence/damage of range-extending coral reef fishes and coexisting local temperate fishes along a 2000 km latitudinal gradient.

View Article and Find Full Text PDF

Global warming facilitates species range-expansions, leading to novel biological interactions between local and range-expanding species. Little is still known of how such novel interactions modify the performance of interacting species or how these interactions might be altered under climate change. Here, we used an aquarium experiment to investigate the novel ecological interactions between a poleward range-extending coral reef damselfish ("tropical-vagrant") and a local temperate species ("temperate-local") collected from a climate warming hotspot in SE Australia.

View Article and Find Full Text PDF

This study assessed the otolith (sagittae, lapilli, and asterisci) increment deposition rate in the range-shifting damselfish, A. vaigiensis, using different concentrations of Alizain Red S and evaluated the impact of staining on increment width. Daily increment deposition was verified in all otolith types and presented clearer fluorescent markings in the lapilli and sagittae than the asterisci, with high stain concentration showing the best clarity.

View Article and Find Full Text PDF

Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks.

View Article and Find Full Text PDF

Climate change can directly (physiology) and indirectly (novel species interactions) modify species responses to novel environmental conditions during the initial stages of range shifts. Whilst the effects of climate warming on tropical species at their cold-water leading ranges are well-established, it remains unclear how future seasonal temperature changes, ocean acidification, and novel species interactions will alter the physiology of range-shifting tropical and competing temperate fish in recipient ecosystems. Here we used a laboratory experiment to examine how ocean acidification, future summer vs winter temperatures, and novel species interactions could affect the physiology of competing temperate and range-extending coral reef fish to determine potential range extension outcomes.

View Article and Find Full Text PDF

Climate change is driving tropicalisation of temperate reefs, yet it is unclear how range-shifting tropical fishes locate suitable habitat. The authors tested whether juvenile tropical damsels Dascyllus trimaculatus could detect rare coral habitat (Pocillopora aliciae) and conspecifics on temperate rocky reefs using olfactory and visual preference experiments. For all cues, individuals selected and spent more time than expected in aquarium areas with the cue present, which included coral odour and conspecific odour and visual cues.

View Article and Find Full Text PDF

As climate warms, tropical species are expanding their distribution to temperate ecosystems where they are confronted with novel predators and habitats. Predation strongly regulates ecological communities, and range-extending species that adopt an effective antipredator strategy have a higher likelihood to persist in non-native environments. Here, we test this hypothesis by comparing various proxies of antipredator and other fitness-related behaviours between range-extending tropical fishes and native-temperate fishes at multiple sites across a 730 km latitudinal range.

View Article and Find Full Text PDF

Habitat associations can be critical predictors of larger-scale organism distributions and range shifts. Here the authors consider how a critical habitat, kelp (Ecklonia radiata) and prey (mysid crustacean swarms), can influence small- and large-scale distribution on the iconic common (weedy) seadragon (Phyllopteryx taeniolatus:Syngnathidae). P.

View Article and Find Full Text PDF

Gregarious behaviours are common in animals and provide various benefits such as food acquisition and protection against predators. Many gregarious tropical species are shifting poleward under current ocean warming, creating novel species and social interactions with local temperate taxa. However, how the dynamics of these novel shoals might be altered by future ocean warming and acidification remains untested.

View Article and Find Full Text PDF

The weedy seadragon (Phyllopteryx taeniolatus: Syngnathidae) is an iconic fish endemic to the southern coastal waters of Australia. The authors of this study analysed the habitat preferences and factors influencing microhabitat selection by P. taeniolatus in a population from Kurnell, NSW, Australia.

View Article and Find Full Text PDF

Coral-reef fishes are shifting their distributions poleward in response to human-mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate-latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co-occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm-temperate and cold-temperate).

View Article and Find Full Text PDF

The common or weedy seadragon, Phyllopteryx taeniolatus, is an iconic and endemic fish found across temperate reefs of southern Australia. Despite its charismatic nature, few studies have been published, and the extent of population sub-structuring remains poorly resolved. Here we used 7462 single nucleotide polymorphisms (SNPs) to identify the extent of population structure in the weedy seadragon along the temperate southeast coast of Australia.

View Article and Find Full Text PDF

Climate change is altering the latitudinal distributions of species, with their capacity to keep pace with a shifting climate depending on the stochastic expression of population growth rates, and the influence of compensatory density feedback on age-specific survival rates. We use population-abundance time series at the leading edge of an expanding species' range to quantify the contribution of stochastic environmental drivers and density feedbacks to the dynamics of life stage-specific population growth. Using a tropical, range-shifting Indo-Pacific damselfish (Abudefduf vaigiensis) as a model organism, we applied variants of the phenomenological Gompertz-logistic model to a 14-year dataset to quantify the relative importance of density feedback and stochastic environmental drivers on the separate and aggregated population growth rates of settler and juvenile life stages.

View Article and Find Full Text PDF

The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects.

View Article and Find Full Text PDF

Climate change is redistributing marine and terrestrial species globally. Life-history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence).

View Article and Find Full Text PDF

The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met.

View Article and Find Full Text PDF

The formation of mixed-species social groups, whereby heterospecifics form and maintain either transient or stable groups with each other, can confer substantial fitness benefits to individuals. Such benefits may arise via multiple mechanisms associated with both predation avoidance and foraging efficiency. In fishes, mixed-species shoaling reportedly occurs where displaced tropical species (known as "vagrants") interact with resident temperate species, although little is known about the nature and frequency of such interactions.

View Article and Find Full Text PDF

Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator-prey dynamics and competition for food. Here, we evaluate the trophic overlap between range-extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions.

View Article and Find Full Text PDF

As ocean waters warm due to climate change, tropical species are shifting their ranges poleward to remain within their preferred thermal niches. As a result, novel communities are emerging in which tropical species interact with local temperate species, competing for similar resources, such as food and habitat. To understand how range-extending coral reef fish species perform along their leading edges when invading temperate ecosystems, we studied proxies of their fitness, including somatic growth (length increase), feeding rates, and body condition, along a 730-km latitudinal gradient situated in one of the global warming hotspots.

View Article and Find Full Text PDF

Ocean warming associated with global climate change is already inducing geographic range shifts of marine species. Juvenile coral reef fishes transported into temperate latitudes (termed 'vagrant' fishes) can experience winter water temperatures below their normal thermal minimum. Such environmental extremes may increase energetic costs for such fishes, resulting in reduced performance, which may be the governing factor that limits the potential for poleward range expansion of such fishes.

View Article and Find Full Text PDF

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species.

View Article and Find Full Text PDF

Thousands of offshore oil and gas structures are approaching the end of their operating life globally, yet our understanding of the environmental effects of different decommissioning strategies is incomplete. Past focus on a narrow set of criteria has limited evaluation of decommissioning effects, restricting decommissioning options in most regions. We broadly review the environmental effects of decommissioning, analyse case studies, and outline analytical approaches that can advance our understanding of ecological dynamics on oil and gas structures.

View Article and Find Full Text PDF

Determining whether many functionally complementary species or only a subset of key species are necessary to maintain ecosystem functioning and services is a critical question in community ecology and biodiversity conservation. Identifying such key species remains challenging, especially in the tropics where many species co-occur and can potentially support the same or different processes. Here, we developed a new community-wide scan (CWS) approach, analogous to the genome-wide scan, to identify fish species that significantly contribute, beyond the socio-environmental and species richness effects, to the biomass and coral cover on Indo-Pacific reefs.

View Article and Find Full Text PDF