An iterative algorithm for the diffusion of heat in layered structures is solved in cylindrical coordinates for the geometry used in measurements of thermophysical properties of materials by the modified transient plane source (MTPS) method. This solution for the frequency-domain temperature response is then used to model the transient temperature excursion and evaluate the accuracy of the measurements. We evaluate when the MTPS method is capable of separately determining the thermal conductivity and heat capacity per unit volume of a material.
View Article and Find Full Text PDFThe coupled transport of charge and heat provide fundamental insights into the microscopic thermodynamics and kinetics of materials. We describe a sensitive ac differential resistance bridge that enables measurements of the temperature difference on two sides of a coin cell with a resolution of better than 10 μK. We use this temperature difference metrology to determine the ionic Peltier coefficients of symmetric Li-ion electrochemical cells as a function of Li salt concentration, solvent composition, electrode material, and temperature.
View Article and Find Full Text PDFQuant Imaging Med Surg
November 2023
Background: Osteoarthritis (OA) is a global healthcare problem. The increasing population of OA patients demands a greater bandwidth of imaging and diagnostics. It is important to provide automatic and objective diagnostic techniques to address this challenge.
View Article and Find Full Text PDFCompact visible wavelength achromats are essential for miniaturized and lightweight optics. However, fabrication of such achromats has proved to be exceptionally challenging. Here, using subsurface 3D printing inside mesoporous hosts we densely integrate aligned refractive and diffractive elements, forming thin high performance hybrid achromatic imaging micro-optics.
View Article and Find Full Text PDFWe demonstrate a combination of computational tools and experimental 4D-STEM methods to image the local magnetic moment in antiferromagnetic FeAs with 6 angstrom spatial resolution. Our techniques utilize magnetic diffraction peaks, common in antiferromagnetic materials, to create imaging modes that directly visualize the magnetic lattice. Using this approach, we show that center-of-mass analysis can determine the local magnetization component in the plane perpendicular to the path of the electron beam.
View Article and Find Full Text PDFThe increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects.
View Article and Find Full Text PDFAcute hip pain following injury more commonly originates locally in and around the hip joint rather than being referred from the lumbar spine, sacroiliac joints, groin, or pelvis. Clinical assessment can usually localize the pain source to the hip region. Thereafter, imaging helps define the precise cause of acute hip pain.
View Article and Find Full Text PDFTime-domain thermoreflectance and frequency-domain thermoreflectance (FDTR) have been widely used for non-contact measurement of anisotropic thermal conductivity of materials with high spatial resolution. However, the requirement of a high thermoreflectance coefficient restricts the choice of metal coating and laser wavelength. The accuracy of the measurement is often limited by the high sensitivity to the radii of the laser beams.
View Article and Find Full Text PDFPurpose: Two-dimensional (2D) fast spin echo (FSE) techniques play a central role in the clinical magnetic resonance imaging (MRI) of knee joints. Moreover, three-dimensional (3D) FSE provides high-isotropic-resolution magnetic resonance (MR) images of knee joints, but it has a reduced signal-to-noise ratio compared to 2D FSE. Deep-learning denoising methods are a promising approach for denoising MR images, but they are often trained using synthetic noise due to challenges in obtaining true noise distributions for MR images.
View Article and Find Full Text PDFHigh thermal conductivity electronic materials are critical components for high-performance electronic and photonic devices as both active functional materials and thermal management materials. We report an isotropic high thermal conductivity exceeding 500 W mK at room temperature in high-quality wafer-scale cubic silicon carbide (3C-SiC) crystals, which is the second highest among large crystals (only surpassed by diamond). Furthermore, the corresponding 3C-SiC thin films are found to have record-high in-plane and cross-plane thermal conductivity, even higher than diamond thin films with equivalent thicknesses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Rapid developments in high-performance computing and high-power electronics are driving needs for highly thermal conductive polymers and their composites for encapsulants and interface materials. However, polymers typically have low thermal conductivities of ∼0.2 W/(m K).
View Article and Find Full Text PDFDynamic covalent networks are a class of polymers containing exchangeable bonds. The influence of the thermodynamics and kinetics of dynamic bond exchange on the thermal conductivity and mechanical properties of dynamic networks is important for understanding how they differ from thermoplastics and thermosets. In this work, a series of ethylene dynamic networks are synthesized from benzene diboronic acid and alkane diols with different precise ethylene linker lengths.
View Article and Find Full Text PDFThe capillary force can peel off a substrate-attached film if the adhesion energy () is low. Capillary peeling has been used as a convenient, rapid, and nondestructive method for fabricating free-standing thin films. However, the critical value of , which leads to the transition between peeling and sticking, remains largely unknown.
View Article and Find Full Text PDFThe densification of integrated circuits requires thermal management strategies and high thermal conductivity materials. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials.
View Article and Find Full Text PDFThermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.
View Article and Find Full Text PDFThermal management in Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the battery materials is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (SEs) over the temperature range 150 < T < 350 K.
View Article and Find Full Text PDFMeasurements of the thermal transport properties of biological fluids and tissues are important for biomedical applications such as thermal diagnostics and thermal therapeutics. Here, we describe a microscale thermoreflectance sensor to measure the thermal effusivity of fluids and biological samples in a minimally invasive manner. The sensor is based on ultrafast optical pump-probe techniques and employs a metal-coated optical fiber as both a photonic waveguide and a local probe.
View Article and Find Full Text PDFPolymeric coatings having micro-to-nanoscale thickness show immense promise for enhancing thermal transport, catalysis, energy conversion, and water collection. Characterizing the work of adhesion () between these coatings and their substrates is key to understanding transport physics as well as mechanical reliability. Here, we demonstrate that water vapor condensation blistering is capable of measurement of work of adhesion at the interface of polymer thin films with micrometer spatial resolution.
View Article and Find Full Text PDFMaterials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched B or B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons.
View Article and Find Full Text PDFThe spin Hall effect couples charge and spin transport, enabling electrical control of magnetization. A quintessential example of spin-Hall-related transport is the anomalous Hall effect (AHE), first observed in 1880, in which an electric current perpendicular to the magnetization in a magnetic film generates charge accumulation on the surfaces. Here, we report the observation of a counterpart of the AHE that we term the anomalous spin-orbit torque (ASOT), wherein an electric current parallel to the magnetization generates opposite spin-orbit torques on the surfaces of the magnetic film.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Materials that can be switched between low and high thermal conductivity states would advance the control and conversion of thermal energy. Employing in situ time-domain thermoreflectance (TDTR) and in situ synchrotron X-ray scattering, we report a reversible, light-responsive azobenzene polymer that switches between high (0.35 W m K) and low thermal conductivity (0.
View Article and Find Full Text PDF