Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity.
View Article and Find Full Text PDFPhospholipid scramblase 1 (PLSCR1) is an antiviral interferon-stimulated gene (ISG) that has several known anti-influenza functions such as interfering with viral nuclear import, regulating toll-like receptor (TLR) 9 and potentiating the expression of other ISGs. However, the exact mechanisms of anti-flu activity of PLSCR1 in relation to its expression compartment and enzymatic activity, and the molecular and cellular mechanisms involved have not been completely explored. Moreover, only limited animal models have been studied to delineate its role at the tissue level in influenza infections.
View Article and Find Full Text PDFRespiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death.
View Article and Find Full Text PDFIn recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression.
View Article and Find Full Text PDFAstroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses.
View Article and Find Full Text PDFRespiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens.
View Article and Find Full Text PDFInfluenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSevere respiratory infections can result in acute respiratory distress syndrome (ARDS). There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS.
View Article and Find Full Text PDFInfluenza A virus (IAV) activates ZBP1-initiated RIPK3-dependent parallel pathways of necroptosis and apoptosis in infected cells. Although mice deficient in both pathways fail to control IAV and succumb to lethal respiratory infection, RIPK3-mediated apoptosis by itself can limit IAV, without need for necroptosis. However, whether necroptosis, conventionally considered a fail-safe cell death mechanism to apoptosis, can restrict IAV-or indeed any virus-in the absence of apoptosis is not known.
View Article and Find Full Text PDFIt has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection.
View Article and Find Full Text PDFAstroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E.
View Article and Find Full Text PDFInfluenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells.
View Article and Find Full Text PDFInfluenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8 T cells confer cross-protection against IAV strains, however the responses of CD8 T cells to IBV and ICV are understudied. We investigated the breadth of CD8 T cell cross-recognition and provide evidence of CD8 T cell cross-reactivity across IAV, IBV and ICV.
View Article and Find Full Text PDFCompared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is a complex and dynamic structure made up of an estimated 300 different proteins. The ECM is also a rich source of cytokines and growth factors in addition to numerous bioactive ECM degradation products that influence cell migration, proliferation, and differentiation. The ECM is constantly being remodeled during homeostasis and in a wide range of pathological contexts.
View Article and Find Full Text PDFInfluenza A virus (IAV) is an RNA virus that is cytotoxic to most cell types in which it replicates. IAV activates the host kinase RIPK3, which induces cell death via parallel pathways of necroptosis, driven by the pseudokinase MLKL, and apoptosis, dependent on the adaptor proteins RIPK1 and FADD. How IAV activates RIPK3 remains unknown.
View Article and Find Full Text PDFLentiviruses are able to establish persistent infection in their respective hosts despite a potent type-I interferon (IFN-I) response following transmission. A number of IFN-I-induced host factors that are able to inhibit lentiviral replication in vitro have been identified, and these studies suggest a role for IFN-induced factors as barriers to cross-species transmission. However, the ability of these factors to inhibit viral replication in vivo has not been well characterized, nor have the viral determinants that contribute to evasion or antagonism of the host IFN-I response.
View Article and Find Full Text PDFSHIV/macaque model is critical for pre-clinical HIV-1 research. The ability of this model to predict efficacious intervention(s) in humans depends on how faithfully the model recapitulates key features of HIV-1 transmission and pathogenesis. Here, we provide insights for rationally designing SHIVs with transmitted HIV-1 variants for vaccine and prevention research.
View Article and Find Full Text PDFUnlabelled: Chimeric simian immunodeficiency virus (SIV)/human immunodeficiency virus (HIV) (SHIV) infection of macaques is commonly used to model HIV type 1 (HIV-1) transmission and pathogenesis in humans. Despite the fact that SHIVs encode SIV antagonists of the known macaque host restriction factors, these viruses require additional adaptation for replication in macaques to establish a persistent infection. Additional adaptation may be required in part because macaque CD4 (mCD4) is a suboptimal receptor for most HIV-1 envelope glycoprotein (Env) variants.
View Article and Find Full Text PDFHIV superinfection (reinfection) has been reported in several settings, but no study has been designed and powered to rigorously compare its incidence to that of initial infection. Determining whether HIV infection reduces the risk of superinfection is critical to understanding whether an immune response to natural HIV infection is protective. This study compares the incidence of initial infection and superinfection in a prospective seroincident cohort of high-risk women in Mombasa, Kenya.
View Article and Find Full Text PDFIK(SO) is a standing-outward potassium current found in cerebellar granule neurons which is inhibited by the activation of muscarinic M(3) receptors. However the pathway between muscarinic receptor activation and current inhibition is unknown. Using two structurally distinct inhibitors of the activation of MEK1 (mitogen activated protein (MAP) kinase kinase 1), PD 98059 and U 0126, we have shown that the MAP kinase signalling cascade does not appear to underlie muscarinic inhibition of IK(SO), recorded using whole-cell patch-clamp methods.
View Article and Find Full Text PDFCerebellar granule neurons (CGNs) possess a standing outward potassium current (IK(SO)) which shares many similarities with current through the two-pore domain potassium channel TASK-1 and which is inhibited following activation of muscarinic acetylcholine receptors. The action of muscarine on IK(SO) was unaffected by the M2 receptor antagonist methoctramine (100 nM) but was blocked by the M3 antagonist zamifenacin, which, at a concentration of 100 nM, shifted the muscarine concentration-response curve to the right by around 50-fold. Surprisingly, M3 receptor activation rarely produced a detectable increase in [Ca2+]i unless preceded by depolarization of the cells with 25 mM K+.
View Article and Find Full Text PDFActivation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in cerebellar granule cells during perforated-patch whole-cell recordings activated an inward current at negative voltages which was followed, after a delay, by the inhibition of an outward potassium current at voltages positive to -20 mV. The activated inward current was inwardly rectifying suggesting that the AMPA receptors were Ca2+-permeable. This was confirmed by direct measurements of intracellular calcium where Ca2+ rises were seen following AMPA receptor activation in Na+-free external solution.
View Article and Find Full Text PDF