We detail scientific and engineering advances which enable the controlled spalling and layer transfer of single crystal 4H silicon carbide (4H-SiC) from bulk substrates. 4H-SiC's properties, including high thermal conductivity and a wide bandgap, make it an ideal semiconductor for power electronics. Moreover, 4H-SiC is an excellent host of solid-state atomic defect qubits for quantum computing and quantum networking.
View Article and Find Full Text PDFColor centers in diamond have widespread utility in quantum technologies, but their creation process remains stochastic in nature. Deterministic creation of color centers in device-ready diamond platforms can improve the yield, scalability, and integration. Recent work using pulsed laser excitation has shown impressive progress in deterministically creating defects in bulk diamond.
View Article and Find Full Text PDFThe burgeoning field of quantum sensing hinges on the creation and control of quantum bits. To date, the most well-studied quantum sensors are optically active, paramagnetic defects residing in crystalline hosts. We previously developed analogous optically addressable molecules featuring a ground-state spin-triplet centered on a Cr ion with an optical-spin interface.
View Article and Find Full Text PDFQuantum information technology offers the potential to realize unprecedented computational resources via secure channels distributing entanglement between quantum computers. Diamond, as a host to optically-accessible spin qubits, is a leading platform to realize quantum memory nodes needed to extend such quantum links. Photonic crystal (PhC) cavities enhance light-matter interaction and are essential for an efficient interface between spins and photons that are used to store and communicate quantum information respectively.
View Article and Find Full Text PDFWe demonstrate nearly a microsecond of spin coherence in Er ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere.
View Article and Find Full Text PDFThe use of trivalent erbium (Er), typically embedded as an atomic defect in the solid-state, has widespread adoption as a dopant in telecommunication devices and shows promise as a spin-based quantum memory for quantum communication. In particular, its natural telecom C-band optical transition and spin-photon interface make it an ideal candidate for integration into existing optical fiber networks without the need for quantum frequency conversion. However, successful scaling requires a host material with few intrinsic nuclear spins, compatibility with semiconductor foundry processes, and straightforward integration with silicon photonics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Controlled interaction between localized and delocalized solid-state spin systems offers a compelling platform for on-chip quantum information processing with quantum spintronics. Hybrid quantum systems (HQSs) of localized nitrogen-vacancy (NV) centers in diamond and delocalized magnon modes in ferrimagnets-systems with naturally commensurate energies-have recently attracted significant attention, especially for interconnecting isolated spin qubits at length-scales far beyond those set by the dipolar coupling. However, despite extensive theoretical efforts, there is a lack of experimental characterization of the magnon-mediated interaction between NV centers, which is necessary to develop such hybrid quantum architectures.
View Article and Find Full Text PDFLocal crystallographic features negatively affect quantum spin defects by changing the local electrostatic environment, often resulting in degraded or varied qubit optical and coherence properties. Few tools exist that enable the deterministic synthesis and study of such intricate systems on the nano-scale, making defect-to-defect strain environment quantification difficult. In this paper, we highlight state-of-the-art capabilities from the U.
View Article and Find Full Text PDFIsolated solid-state atomic defects with telecom optical transitions are ideal quantum photon emitters and spin qubits for applications in long-distance quantum communication networks. Prototypical telecom defects, such as erbium, suffer from poor photon emission rates, requiring photonic enhancement using resonant optical cavities. Moreover, many of the traditional hosts for erbium ions are not amenable to direct incorporation with existing integrated photonics platforms, limiting scalable fabrication of qubit-based devices.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
SignificanceAtomic defects in solid-state materials are promising candidates as quantum bits, or qubits. New materials are actively being investigated as hosts for new defect qubits; however, there are no unifying guidelines that can quantitatively predict qubit performance in a new material. One of the most critical property of qubits is their quantum coherence.
View Article and Find Full Text PDFAn outstanding hurdle for defect spin qubits in silicon carbide (SiC) is single-shot readout, a deterministic measurement of the quantum state. Here, we demonstrate single-shot readout of single defects in SiC via spin-to-charge conversion, whereby the defect's spin state is mapped onto a long-lived charge state. With this technique, we achieve over 80% readout fidelity without pre- or postselection, resulting in a high signal-to-noise ratio that enables us to measure long spin coherence times.
View Article and Find Full Text PDFThe inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for = 1, Cr(aryl), where aryl = 2,4-dimethylphenyl (), -tolyl (), and 2,3-dimethylphenyl (), is readily translated into Cr(alkyl) compounds, where alkyl = 2,2,2-triphenylethyl (), (trimethylsilyl)methyl (), and cyclohexyl ().
View Article and Find Full Text PDFNoiseless optical components are critical for applications ranging from metrology to quantum communication. Here, we characterize several commercial telecom C-band fiber components for parasitic noise using a tunable laser. We observe the spectral signature of trace concentrations of erbium in all devices from the underlying optical crystals including , , , and amorphous material transmitting infrared radiation glass.
View Article and Find Full Text PDFSynthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure.
View Article and Find Full Text PDFSpin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing ground-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules.
View Article and Find Full Text PDFNuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories.
View Article and Find Full Text PDFDecoherence limits the physical realization of qubits, and its mitigation is critical for the development of quantum science and technology. We construct a robust qubit embedded in a decoherence-protected subspace, obtained by applying microwave dressing to a clock transition of the ground-state electron spin of a silicon carbide divacancy defect. The qubit is universally protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state.
View Article and Find Full Text PDFIntegrating solid-state quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications. While diamond color centers have proven to be excellent candidates for emerging quantum technologies, their integration with optical resonators remains challenging. Conventional approaches based on etching resonators into diamond often negatively impact color center performance and offer low device yield.
View Article and Find Full Text PDFSolid-state quantum emitters with spin registers are promising platforms for quantum communication, yet few emit in the narrow telecom band necessary for low-loss fiber networks. Here, we create and isolate near-surface single vanadium dopants in silicon carbide (SiC) with stable and narrow emission in the O band, with brightness allowing cavity-free detection in a wafer-scale material. In vanadium ensembles, we characterize the complex orbital physics in all five available sites in 4H-SiC and 6H-SiC.
View Article and Find Full Text PDFSilicon carbide has recently been developed as a platform for optically addressable spin defects. In particular, the neutral divacancy in the 4H polytype displays an optically addressable spin-1 ground state and near-infrared optical emission. Here, we present the Purcell enhancement of a single neutral divacancy coupled to a photonic crystal cavity.
View Article and Find Full Text PDFDefect-based quantum systems in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can diminish spin-initialization fidelities and limit room-temperature operation. Here, we identify a pathway around these drawbacks by showing that an engineered quantum well can stabilize the charge state of a qubit.
View Article and Find Full Text PDF