Since the National Ignition Facility (NIF) was commissioned in 2009, radiochemical techniques have been viewed as a potential method for diagnosing the performance of an NIF fusion shot. Radiochemical methods can also be used in conjunction with NIF shots to measure nuclear reaction cross sections in regimes that are inaccessible at accelerator facilities and can provide a route to produce radioactive tracer materials that can be used for other applications. This review presents the current status of radiochemical diagnostics at the NIF.
View Article and Find Full Text PDFFlerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character.
View Article and Find Full Text PDFA nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively.
View Article and Find Full Text PDFNeutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models.
View Article and Find Full Text PDFThe probability that a nucleus will absorb a neutron-the neutron capture cross-section-is important to many areas of nuclear science, including stellar nucleosynthesis, reactor performance, nuclear medicine and defence applications. Although neutron capture cross-sections have been measured for most stable nuclei, fewer results exist for radioactive isotopes, and statistical-model predictions typically have large uncertainties. There are almost no nuclear data for neutron-induced reactions of the radioactive nucleus Zr, despite its importance as a diagnostic for nuclear security.
View Article and Find Full Text PDFNuclear fusion experiments performed at the National Ignition Facility produce radioactive debris, arising in reactions of fast neutrons with the target assembly. We have found that postshot debris collections are fractionated, such that isotope ratios in an individual debris sample may not be representative of the radionuclide inventory produced by the experiment. We discuss the potential sources of this fractionation and apply isotope-correlation techniques to calculate unfractionated isotope ratios that are used in measurements of nuclear reaction cross sections.
View Article and Find Full Text PDFA large area solid radiochemistry collector was deployed at the National Ignition Facility (NIF) with a collection efficiency for post-shot, solid target debris of approximately 1% of the total 4π solid angle. The collector consisted of a 20-cm diameter vanadium foil surrounded by an aluminum side-enclosure and was fielded 50 cm from the NIF target. The collector was used on two NIF neutron yield shots, both of which had a monolayer of U embedded in the capsule ablator 10 m from the inner surface.
View Article and Find Full Text PDFThe solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.
View Article and Find Full Text PDFPrecisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of Kr and compared to previously tabulated values.
View Article and Find Full Text PDFA high-purity carrier-free (7)Be was efficiently isolated following proton bombardment of a lithium hydroxide-aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry.
View Article and Find Full Text PDFA new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model.
View Article and Find Full Text PDFWe describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time.
View Article and Find Full Text PDFThe superheavy element with atomic number Z=117 was produced as an evaporation residue in the (48)Ca+(249)Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope (294)117 and its decay products.
View Article and Find Full Text PDFTwo years after the discovery of element 117, we undertook a second campaign using the (249)Bk+(48)Ca reaction for further investigations of the production and decay properties of the isotopes of element 117 on a larger number of events. The experiments were started in the end of April 2012 and are still under way. This Letter presents the results obtained in 1200 hours of an experimental run with the beam dose of (48)Ca of about 1.
View Article and Find Full Text PDFThe Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix.
View Article and Find Full Text PDFRadiochemical analysis of post-ignition debris inside the National Ignition Facility (NIF) target chamber can help determine various diagnostic parameters associated with the implosion efficiency of the fusion capsule. This technique is limited by the ability to distinguish ablator material from other debris and by the collection efficiency of the capsule debris after implosion. Prior to designing an on-line collection system, the chemical nature and distribution of the debris inside the chamber must be determined.
View Article and Find Full Text PDFResults of a new series of experiments on the study of production cross sections and decay properties of the isotopes of element 115 in the reaction (243)Am+(48)Ca are presented. Twenty-one new decay chains originating from (288)115 were established as the product of the 3n-evaporation channel by measuring the excitation function at three excitation energies of the compound nucleus (291)115. The decay properties of all newly observed nuclei are in full agreement with those we measured in 2003.
View Article and Find Full Text PDFThe discovery of a new chemical element with atomic number Z=117 is reported. The isotopes (293)117 and (294)117 were produced in fusion reactions between (48)Ca and (249)Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator.
View Article and Find Full Text PDFEnviron Sci Technol
April 2005
Manganese oxides, present as minor phases in the vadose zone, have been previously shown to sequester large quantities of plutonium under environmental conditions. We are now continuing these studies with Np(V). Sorption onto manganite (MnOOH) and hausmannite (Mn3O4) at solid-to-solution ratios of 2.
View Article and Find Full Text PDFThe sorption of Pu(VI) onto manganite (MnOOH) and hausmannite (Mn3O4) was studied as a function of time, solution pH, and initial plutonium concentration. Kinetic experiments indicate that the surface complexation of plutonium occurs over the first 24 h of contact with the mineral surface. The sorption increases with pH beginning at pH 3 until it reaches a maximum value of 100% at pH 8 (0.
View Article and Find Full Text PDFThe arrangement of the chemical elements in the periodic table highlights resemblances in chemical properties, which reflect the elements' electronic structure. For the heaviest elements, however, deviations in the periodicity of chemical properties are expected: electrons in orbitals with a high probability density near the nucleus are accelerated by the large nuclear charges to relativistic velocities, which increase their binding energies and cause orbital contraction. This leads to more efficient screening of the nuclear charge and corresponding destabilization of the outer d and f orbitals: it is these changes that can give rise to unexpected chemical properties.
View Article and Find Full Text PDFNew neutron rich isotopes 267107Bh and 266107Bh were produced in bombardments of a 249Bk target with 117-MeV and 123-MeV 22Ne ions at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Identification was made by observation of correlated alpha-particle decays between the Bh isotopes and their Db and Lr daughters using a rotating wheel system. 267Bh was produced with a cross section of approximately 70 pb and decays with a 17(+14)(-6) s half life by emission of alpha particles with an average energy of 8.
View Article and Find Full Text PDF