Expert Opin Drug Deliv
October 2011
Introduction: During drug development and product life-cycle management, it may be necessary to establish bioequivalence between two pharmaceutical products. Methodologies to determine bioequivalence are well established for oral, systemically acting formulations. However, for inhaled drugs, there is currently no universally adopted methodology, and regulatory guidance in this area has been subject to debate.
View Article and Find Full Text PDFThis March 2009 Workshop Summary Report was sponsored by Product Quality Research Institute (PQRI) based on a proposal by the Inhalation and Nasal Technology Focus Group (INTFG) of the American Association of Pharmaceutical Scientists (AAPS). Participants from the pharmaceutical industry, academia and regulatory bodies from the United States, Europe, India, and Brazil attended the workshop with the objective of presenting, reviewing, and discussing recommendations for demonstrating bioequivalence (BE) that may be considered in the development of orally inhaled drug products and regulatory guidances for new drug applications (NDAs), abbreviated NDAs (ANDAs), and postapproval changes. The workshop addressed areas related to in vitro approaches to demonstrating BE, biomarker strategies, imaging techniques, in vivo approaches to establishing local delivery equivalence and device design similarity.
View Article and Find Full Text PDFBackground: The use of dry-powder inhalers (DPIs) to administer respiratory medicines is increasing, and new DPIs are likely to be developed because of expiring patents. However, there is considerable debate concerning the extent to which DPIs are interchangeable without altering disease control or the safety profile of the treatment.
Objective: This study was designed to compare the pharmacokinetic (PK), pharmacodynamic (PD), efficacy, and safety data for 2 DPIs delivering a combination of salmeterol 50 microg plus fluticasone propionate (FP) 250 microg (SFC 50/250) to investigate assumptions of bioequivalence.
Biopharmaceutical products represent a diverse group of products that includes proteins, peptides, nucleic acids, whole cells, viral particles and vaccines. The conformation of the macromolecule or cell must be maintained to retain biological activity, and animal models for biological activity and characterization assays are often developed in tandem with initial formulation studies. This presents the formulation scientist with a unique set of challenges when compared to those for small molecules.
View Article and Find Full Text PDFTraditionally, optimisation of a gene delivery formulation utilises a study design that involves altering only one formulation variable at any one time whilst keeping the other variables constant. As gene delivery formulations become more complex, e.g.
View Article and Find Full Text PDFNonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus.
View Article and Find Full Text PDFThe particulate-matter content of 11 dry-powder cephalosporin injections was determined using a modified version of the official United States Pharmacopeial Convention (USP) method for particulate matter in small-volume injections (SVIs). Ten vials of each cephalosporin product were each constituted with 10 mL of Water for Injections BP that had been filtered through a 0.22-micron membrane.
View Article and Find Full Text PDF