Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two "space embryo" studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation.
View Article and Find Full Text PDFHeavy metals like arsenic, mercury, cadmium, and lead are harmful pollutants that can change how our genes are regulated without altering the DNA sequence, specifically through a process called DNA methylation (DNAm) at 5-methylcytosine, an epigenetic mark that we will focus on in this review. These changes in DNAm are most sensitive during pregnancy, a critical time for development when these modifications can affect how traits are expressed. Historically, most research on these environmental effects has focused on adults, but now there is more emphasis on studying the impacts during early development and childhood.
View Article and Find Full Text PDFBackground: Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.
View Article and Find Full Text PDFAlthough toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21.
View Article and Find Full Text PDF