Publications by authors named "D van Haarlem"

Intestinal organoids are advanced cellular models, which are widely used in mammalian studies to mimic and study in vivo intestinal function and host-pathogen interactions. Growth factors WNT3 and RSPO1 are crucial for the growth of intestinal organoids. Chicken intestinal organoids are currently cultured with mammalian Wnt3a and Rspo1, however, maintaining their longevity has shown to be challenging.

View Article and Find Full Text PDF

The zoonotic pathogen Salmonella enterica serotype Enteritidis (SE) causes severe disease in young chickens. Restriction on antibiotic use requires alternative SE control strategies such as nutritional solutions to improve the resistance of chickens. In this study, chickens were fed long-chain glucomannan (GM) or standard diet and challenged with SE at seven days of age.

View Article and Find Full Text PDF

Salmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed.

View Article and Find Full Text PDF

Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo.

View Article and Find Full Text PDF

Colibacillosis in chickens caused by avian pathogenic Escherichia coli (APEC) is known to be aggravated by preceding infections with infectious bronchitis virus (IBV), Newcastle disease virus (NDV) and avian metapneumovirus (aMPV). The mechanism behind these virus-induced predispositions for secondary bacterial infections is poorly understood. Here we set out to investigate the immunopathogenesis of enhanced respiratory colibacillosis after preceding infections with these three viruses.

View Article and Find Full Text PDF