Direct reprogramming involves the conversion of differentiated cell types without returning to an earlier developmental state. Here, we explore how heterogeneity in developmental lineage and maturity of the starting cell population contributes to direct reprogramming using the conversion of murine fibroblasts into neurons. Our hypothesis is that a single lineage of cells contributes to most reprogramming and that a rare elite precursor with intrinsic bias is the source of reprogrammed neurons.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by pronounced motor dysfunction and resulting in physical disability. Neural precursor cells (NPCs) have shown therapeutic promise in mouse models of hypoxic-ischemic (HI) perinatal brain injury, which mirror hemiplegic CP. Constraint-induced movement therapy (CIMT) enhances the functional use of the impaired limb and has emerged as a beneficial intervention for hemiplegic CP.
View Article and Find Full Text PDFDrug dependence is characterized by a switch in motivation wherein a positively reinforcing substance can become negatively reinforcing. Put differently, drug use can transform from a form of pleasure-seeking to a form of relief-seeking. Ventral tegmental area (VTA) GABA neurons form an anatomical point of divergence between two double dissociable pathways that have been shown to be functionally implicated and necessary for these respective motivations to seek drugs.
View Article and Find Full Text PDFDegenerative retinal diseases associated with photoreceptor loss are a leading cause of visual impairment worldwide, with limited treatment options. Phenotypic profiling coupled with medicinal chemistry were used to develop a small molecule with proliferative effects on retinal stem/progenitor cells, as assessed in vitro in a neurosphere assay and in vivo by measuring Msx1-positive ciliary body cell proliferation. The compound was identified as having kinase inhibitory activity and was subjected to cellular pathway analysis in non-retinal human primary cell systems.
View Article and Find Full Text PDFAccording to the opponent-process theory of drug addiction, the intake of an addictive substance initiates two processes: a rapid primary process that results in the drug's rewarding effects, and a slower opponent process that leads to the aversive motivational state of drug aftereffects. This aversive state is integral in the desire, pursuit, and maintenance of drug use, potentially leading to dependence and addiction. However, current observational and experimental evidence suggests that the administration of a 5-hydroxytryptamine receptors-type 2A (5-HT2A) agonist, while capable of inducing a positive mental state in humans, may not generate the behavioral patterns typically associated with drugs of abuse.
View Article and Find Full Text PDF