Publications by authors named "D Zilberstein"

Parasitic protozoa of the genus Leishmania cycle between the phagolysosome of mammalian macrophages, where they reside as rounded intracellular amastigotes, and the midgut of female sand flies, which they colonize as elongated extracellular promastigotes. Previous studies indicated that protein kinase A (PKA) plays an important role in the initial steps of promastigote differentiation into amastigotes. Here, we describe a novel regulatory subunit of PKA (which we have named PKAR3) that is unique to Leishmania and most (but not all) other Kinetoplastidae.

View Article and Find Full Text PDF

Host cell functions that participate in the pharmacokinetics and pharmacodynamics (PK/PD) of drugs against intracellular pathogen infections are critical for drug efficacy. In this study, we investigated whether macrophage mechanisms of xenobiotic detoxification contribute to the elimination of intracellular upon exposure to pentavalent antimonials (Sb). Primary macrophages from patients with cutaneous leishmaniasis (CL) (n=6) were exposed to infection and Sb, and transcriptomes were generated.

View Article and Find Full Text PDF

Leishmania, the causative agent of leishmaniasis, is an obligatory intracellular parasite that cycles between phagolysosome of mammalian macrophages, where it resides as round intracellular amastigotes, and the midgut of female sandflies, where it resides as extracellular elongated promastigotes. This protozoan parasite cytoskeleton is composed of stable and abundant subpellicular microtubules (SPMT). This study aims to determine the kinetics of developmental morphogenesis and assess whether microtubules remodelling is involved in this process.

View Article and Find Full Text PDF

Protozoa of the genus Leishmania are intracellular parasites that cause human leishmaniasis, a disease spread mostly in the tropics and subtropics. Leishmania cycle between the midgut of female sand flies and phagolysosome of mammalian macrophages. During their life cycle they constantly encounter changing nutritional environments.

View Article and Find Full Text PDF

Phagolysosomes of macrophages are the niche where the parasitic protozoan resides and causes human leishmaniasis. During infection, this organism encounters dramatic environmental changes. These include heat shock (from 26°C in the vector to 33°C or 37°C in the host, for cutaneous and visceral species, respectively) and acidic pH typical to the lysosome and nutrient availability.

View Article and Find Full Text PDF