Publications by authors named "D Zart"

Cells of Nitrosomonas eutropha strain N904 that were denitrifying under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were unable to utilize ammonium (ammonia) as an energy source. The recovery of ammonia oxidation activity was dependent on the presence of NO2. Anaerobic ammonia oxidation activity was observed in a helium atmosphere supplemented with 25 ppm NO2 after 20 h.

View Article and Find Full Text PDF

Cells of Nitrosomonas eutropha grown under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were initially unable to oxidize ammonia (ammonium) and hydroxylamine when transferred to oxic conditions. Recovery of ammonia and hydroxylamine oxidation activity was dependent on the presence of NO2. Under oxic conditions, without addition of NO2, ammonia consumption started after 8 - 9 days, and small amounts of NO and NO2 were detectable in the gas atmosphere.

View Article and Find Full Text PDF

Nitrification by the obligately lithoautotrophic ammonia oxidizer Nitrosomonas eutropha was significantly inhibited when nitric oxide was removed from the culture medium by means of intensive aeration and turbulence. Nearly complete recovery of ammonia oxidation could be achieved by adding 100 ppm NO to the supplied air. Inhibition of ammonia oxidation occurred also upon addition of the NO binding agent 2,3-Dimercapto-1-propane-sulfonic acid (DMPS).

View Article and Find Full Text PDF

A pure culture of the obligately lithoautotrophic ammonia-oxidizer Nitrosomonas eutropha was grown in a laboratory-scale bioreactor with complete biomass retention. The air supply was supplemented with nitrogen dioxide (NO2; 25 or 50 ppm) or nitric oxide (NO; 25 or 50 ppm). Compared to cultures grown without these nitrogenous oxides, the addition of NO2 or NO to the culture resulted in a significant increase of the nitrification rate, specific activity of ammonia oxidation, growth rate, and maximum cell densities.

View Article and Find Full Text PDF

Allograft transplantation with concomitant chemotherapy has proven successful in the treatment of malignant bone tumors. However, these chemotherapeutic agents may delay tissue healing, resulting in clinical complications. To clarify the effects of cisplatin on the healing of bone grafts, we studied the incorporation of stably fixed massive diaphyseal femoral syngeneic and allogeneic grafts in rats treated with cisplatin.

View Article and Find Full Text PDF