The dynamics of the convergence for the stationary state considering a Duffing-like equation are investigated. The driven potential for these dynamics is supplied by a damped forced oscillator that has a piecewise linear function. Fixed points and their basins of attraction were identified and measured.
View Article and Find Full Text PDFNearly half of the bee species can perform a fascinating stereotyped behavior to collect pollen grains by vibrating flowers, known as buzz pollination. During the floral visit, these bees mechanically transfer the vibrations produced by their thoracic indirect flight muscles to the flower anther, inducing the movement of the pollen grains and leading them to be released through a small pore or slit placed at the tip of the anther in poricidal flowers. In such flowers, pollen release is affected by the vibrational behavior of buzzing bees, primarily their duration and velocity amplitude.
View Article and Find Full Text PDFWe investigate some statistical properties of escaping particles in a billiard system whose boundary is described by two control parameters with a hole on its boundary. Initially, we analyze the survival probability for different hole positions and sizes. We notice that the survival probability follows an exponential decay with a characteristic power-law tail when the hole is positioned partially or entirely over large stability islands in phase space.
View Article and Find Full Text PDFBackground: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect.
Methods: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer.
Results: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers.
ACS Appl Mater Interfaces
November 2023
Soft actuators are deformable materials that change their dimensions or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response, and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common materials for magnetic soft actuators.
View Article and Find Full Text PDF