Publications by authors named "D Y Sakae"

Background: Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood.

Methods: We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.

View Article and Find Full Text PDF

In opioid addiction, cues and contexts associated with drug reward can be powerful triggers for drug craving and relapse. The synapses linking ventral hippocampal outputs to medium spiny neurons of the accumbens may be key sites for the formation and storage of associations between place or context and reward, both drug-related and natural. To assess this, we implanted rats with electrodes in the accumbens shell to record synaptic potentials evoked by electrical stimulation of the ventral hippocampus, as well as continuous local-field-potential activity.

View Article and Find Full Text PDF

The atypical vesicular glutamate transporter VGLUT3 is present in subpopulations of GABAergic interneurons in the cortex and the hippocampus, in subgroups of serotoninergic neurons in raphe nuclei, and in cholinergic interneurons in the striatum. C56BL/6N mice that no longer express VGLUT3 (VGLUT3 ) display anxiety-associated phenotype, increased spontaneous and cocaine-induced locomotor activity and decreased haloperidol-induced catalepsy. Inbred mouse strains differ markedly in their sensitivity to anxiety and behavioral responses elicited by drugs.

View Article and Find Full Text PDF

Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells.

View Article and Find Full Text PDF

The atypical vesicular glutamate transporter type 3 (VGLUT3) is expressed by subpopulations of neurons using acetylcholine, GABA, or serotonin as neurotransmitters. In addition, VGLUT3 is expressed in the inner hair cells of the auditory system. A mutation (p.

View Article and Find Full Text PDF