Background: Solvent/detergent (S/D) treatment is an established virus inactivation technology that has been applied in the manufacture of medicinal products derived from human plasma for more than 20 years. Data on the inactivation of enveloped viruses by S/D treatment collected from seven Plasma Protein Therapeutics Association member companies demonstrate the robustness, reliability, and efficacy of this virus inactivation method.
Study Design And Methods: The results from 308 studies reflecting production conditions as well as technical variables significantly beyond the product release specification were evaluated for virus inactivation, comprising different combinations of solvent and detergent (tri(n-butyl) phosphate [TNBP]/Tween 80, TNBP/Triton X-100, TNBP/Na-cholate) and different products (Factor [F]VIII, F IX, and intravenous and intramuscular immunoglobulins).
Background And Objectives: Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases caused by aberrantly folded cellular proteins (PrP(Sc); prions) that are generally resistant to conventional pathogen-inactivation techniques. To ensure effective decontamination and inactivation of prions that could be present in source material, we investigated critical factors that influence prion inactivation by NaOH.
Materials And Methods: A decrease in prion infectivity correlates with the disappearance of the protease-resistant core of PrPSc (PrPRES) observed in biochemical assays.
Protein products isolated from human plasma are an important class of therapeutics that are used to treat patients afflicted with hereditary deficiencies, trauma, and severe infections. Because of the human origin of the starting material for the production of these biological products, there is a risk of transmitting infectious agents, including viruses and the infectious agents that cause transmissible spongiform encephalopathies (TSEs). The agent that is thought to cause TSEs is a disease-associated, misfolded form of the prion protein or PrP(Sc).
View Article and Find Full Text PDFHuman plasma-derived proteins, such as immunoglobulins, coagulation factors, alpha1-antitrypsin, fibrin sealants, and albumin, are widely used as therapeutics for many serious and life-threatening medical conditions. The human origin of these proteins ensures excellent efficacy and compatibility but may also introduce the risk of unintentional disease transmission. Historically, only viruses, particularly hepatitis and HIV, have posed serious threats to the safety of these therapeutics.
View Article and Find Full Text PDFSpecific detection of the pathogenic prion protein, PrP(Sc), is essential for determining the prion clearance capacity of purification processes for therapeutic proteins. Use of a previously described indirect (two-antibody) Western blot assay sometimes resulted in the appearance of non-specific protein bands that interfered with the detection of small amounts of PrP(Sc)-specific signal, limiting the amount of clearance that could be determined for steps so affected. It is shown that these non-specific signals are due to the interaction between immunoglobulin fragments in the sample and the secondary antibody used in the assay.
View Article and Find Full Text PDF