Publications by authors named "D X Chen"

Purpose: Glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) and basal insulin are currently used in the treatment of type 2 diabetes mellitus (T2DM) as long-acting injectables. In this study, we aimed to compare the cardiovascular (CV) and renal outcomes of GLP-1 RAs and basal insulin treatment in patients with T2DM.

Method: We conducted a propensity score-matched cohort study of patients from Chang Gung Memorial Hospital institutions between 2013 and 2021.

View Article and Find Full Text PDF

Background: Accurately distinguishing lymph node metastases (LNM) from papillary thyroid carcinomas (PTC) is crucial in clinical practice. The role of the immune system in PTC-LNM has attracted increasing attention. The aim of the present study was to evaluate the differential expression of 92 immune-related proteins in the serum and identify their potential diagnostic effects in patients with PTC-LNM.

View Article and Find Full Text PDF

Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.

View Article and Find Full Text PDF

The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.

View Article and Find Full Text PDF

Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.

View Article and Find Full Text PDF