Publications by authors named "D Wodka"

An excess phosphate burden in renal disease has pathological consequences for bone, kidney, and heart. Therapies to decrease intestinal phosphate absorption have been used to address the problem, but with limited success. Here, we describe the in vivo effects of a novel potent inhibitor of the intestinal sodium-dependent phosphate cotransporter NPT2b, LY3358966.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) plays an essential role as a cellular energy sensor and master regulator of metabolism in eukaryotes. Dysregulated lipid and carbohydrate metabolism resulting from insulin resistance leads to hyperglycemia, the hallmark of type 2 diabetes mellitus (T2DM). While pharmacological activation of AMPK is anticipated to improve these parameters, the discovery of selective, direct activators has proven challenging.

View Article and Find Full Text PDF

The location of the Pd atoms in Pd2Au36(SC2H4Ph)24, is studied both experimentally and theoretically. X-ray photoelectron spectroscopy (XPS) indicates oxidized Pd atoms. Palladium K-edge extended X-ray absorption fine-structure (EXAFS) data clearly show Pd-S bonds, which is supported by far infrared spectroscopy and by comparing theoretical EXAFS spectra in R space and circular dichroism spectra of the staple, surface and core doped structures with experimental spectra.

View Article and Find Full Text PDF

Photocatalytic activity of Ag/TiO(2) composites obtained by photoreduction treatment (PRT) was investigated. The composite materials, containing various ratio of silver nanoparticles (0.6-3.

View Article and Find Full Text PDF

Polyelectrolyte films structure formed by the "layer-by-layer" (LbL) technique can be enriched by addition of charged nanoparticles like carbon nanotubes and silver or hydroxyapatite nanoparticles, which can improve properties of the polyelectrolyte films or modify their functionality. In our paper we examined the formation and properties of model polyelectrolyte multilayers containing a synthetic layered silicate, Laponite. The Laponite nanoparticles were incorporated into multilayer films, which were formed from weak, branched polycation PEI and strong polyanion PSS.

View Article and Find Full Text PDF