We report the results from a new multicusp ion source (MIST-1) that produces record steady-state currents of H (1 mA) from this type of ion source with high purity (80% H ). We built MIST-1 to fulfill the stringent beam purity and beam quality requirements for IsoDAR, a proposed discovery-level neutrino experiment, requiring a 10 mA, 60 MeV/amu continuous wave (cw) proton beam on the target. IsoDAR will use a cyclotron accelerating H ions and using a novel radio frequency quadrupole (RFQ) direct injection method.
View Article and Find Full Text PDFThe axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axionlike particle dark matter is relatively unexplored, particularly at masses m_{a}≲1 μeV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, 10^{-12}≲m_{a}≲10^{-6} eV.
View Article and Find Full Text PDFIsoDAR (Isotope Decay-At-Rest) is a novel experiment designed to measure neutrino oscillations through ν̄(e) disappearance, thus providing a definitive search for sterile neutrinos. In order to generate the necessary anti-neutrino flux, a high intensity primary proton beam is needed. In IsoDAR, H2(+) is accelerated and is stripped into protons just before the target, to overcome space charge issues at injection.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
The Isotope Decay-At-Rest (IsoDAR) experimental program aims to decisively test the sterile neutrino hypothesis. In essence, it is a novel cyclotron based neutrino factory that will improve the frontiers in both high-intensity cyclotrons and electron flavor anti-neutrino sources. By using a source in which the usual H(-) ions are replaced with the more tightly bound H2(+) ions, we can negate the effects of Lorentz stripping in a cyclotron, reduce the overall perveance due to the space-charge effect, and deliver twice the number of protons per nuclei on target.
View Article and Find Full Text PDFThe Catania VIS 2.46 GHz source has been installed on a test stand at the Best Cyclotron Systems, in Vancouver, Canada, as part of the DAEδALUS and IsoDAR R&D program. Studies to date include optimization for H2 (+)/p ratio and emittance measurements.
View Article and Find Full Text PDF