Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits.
View Article and Find Full Text PDFClosely related sexual and parthenogenetic species often show distinct distribution patterns, known as geographical parthenogenesis. Similar patterns, characterized by the existence of separate sexual and parthenogenetic populations across their natural range, can also be found in facultative parthenogens - species in which every female is capable of both sexual and parthenogenetic reproduction. The underlying mechanisms driving this phenomenon in nature remain unclear.
View Article and Find Full Text PDFModels of terrestrial planet formation predict that the final stages of planetary assembly-lasting tens of millions of years beyond the dispersal of young protoplanetary disks-are dominated by planetary collisions. It is through these giant impacts that planets like the young Earth grow to their final mass and achieve long-term stable orbital configurations. A key prediction is that these impacts produce debris.
View Article and Find Full Text PDFIntegr Comp Biol
September 2021
Males in many species engage in physical combat over access to mates, and sexual selection has led to the evolution of weapons to enhance contest performance. The size of these often-elaborate structures is known to be exquisitely sensitive to nutrition. However, we know very little about the degree to which nutrition affects other attributes of animal weapons that can be crucial to fighting.
View Article and Find Full Text PDFYoung stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbital plane of the stars, the disk should warp and break into precessing rings, a phenomenon known as disk tearing.
View Article and Find Full Text PDF