Publications by authors named "D Watson-Parris"

The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between -10° and -24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions.

View Article and Find Full Text PDF

Cloud reflectivity is sensitive to atmospheric aerosol concentrations because aerosols provide the condensation nuclei on which water condenses. Increased aerosol concentrations due to human activity affect droplet number concentration, liquid water and cloud fraction, but these changes are subject to large uncertainties. Ship tracks, long lines of polluted clouds that are visible in satellite images, are one of the main tools for quantifying aerosol-cloud interactions.

View Article and Find Full Text PDF

Global shipping accounts for 13% of global emissions of SO, which, once oxidized to sulfate aerosol, acts to cool the planet both directly by scattering sunlight and indirectly by increasing the albedo of clouds. This cooling due to sulfate aerosol offsets some of the warming effect of greenhouse gasses and is the largest uncertainty in determining the change in the Earth's radiative balance by human activity. Ship tracks-the visible manifestation of the indirect of effect of ship emissions on clouds as quasi-linear features-have long provided an opportunity to quantify these effects.

View Article and Find Full Text PDF
Article Synopsis
  • The data descriptor covers key scientific insights from General Circulation Models (GCMs) used in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), focusing on climate responses to changes in greenhouse gases, aerosols, and solar radiation.
  • It provides global and annual mean results from a wide range of coupled atmospheric-ocean GCM simulations, emphasizing the importance of single idealized perturbations to understand climate behavior better.
  • The dataset is designed to be user-friendly, offering an accessible way to extract files, and is expected to support research on complex GCMs and Earth System Models in the Coupled Model Intercomparison Project.
View Article and Find Full Text PDF