Publications by authors named "D Wales"

The creation of hosts capable of accommodating different guest molecules may enable these hosts to play useful roles in chemical purifications, among other applications. Metal-organic cages are excellent hosts for various guests, but they generally incorporate rigid structural units that hinder dynamic adaptation to specific guests. Here we report a conformationally adaptable pseudo-cubic cage that can dynamically increase its cavity volume to fit guests with differing sizes.

View Article and Find Full Text PDF

Vibrational spectroscopy is a cornerstone technique for molecular characterization and offers an ideal target for the computational investigation of molecular materials. Building on previous comprehensive assessments of efficient methods for infrared (IR) spectroscopy, this study investigates the predictive accuracy and computational efficiency of gas-phase IR spectra calculations, accessible through a combination of modern semiempirical quantum mechanical and transferable machine learning potentials. A composite approach for IR spectra prediction based on the double-harmonic approximation, utilizing harmonic vibrational frequencies in combination squared derivatives of the molecular dipole moment, is employed.

View Article and Find Full Text PDF

A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) peptides, particularly Aβ, plays a key role in Alzheimer's disease pathogenesis. In this study, we investigate how dimerisation transforms the free energy surface (FES) of the Aβ monomer when it interacts with another Aβ peptide. We find that the monomer FES is a structurally inverted funnel with a disordered state at the global minimum.

View Article and Find Full Text PDF

Photosystem II (PSII) has the unique ability to perform water-splitting. With light-harvesting complexes, it forms the PSII supercomplex (PSII-SC) which is a functional unit that can perform efficient energy conversion, as well as photoprotection, allowing photosynthetic organisms to adapt to the naturally fluctuating sunlight intensity. Achieving these functions requires a collaborative energy transfer network between all subunits of the PSII-SC.

View Article and Find Full Text PDF