Publications by authors named "D W Schindler"

Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs.

View Article and Find Full Text PDF

Golden Gate cloning has become one of the most important DNA assembly strategies. The construction of standardized and reusable part libraries, their assembly into transcription units, and the subsequent assembly of multigene constructs is highly reliable and sustainable. Researchers can quickly construct derivatives of their assemblies or entire pathways, and importantly, the standardization of Golden Gate assemblies is compatible with laboratory automation.

View Article and Find Full Text PDF

Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism.

View Article and Find Full Text PDF

Golden Gate cloning has revolutionized synthetic biology. Its concept of modular, highly characterized libraries of parts that can be combined into higher order assemblies allows engineering principles to be applied to biological systems. The basic parts, typically stored in Level 0 plasmids, are sequence validated by the method of choice and can be combined into higher order assemblies on demand.

View Article and Find Full Text PDF