Publications by authors named "D W Poore"

Article Synopsis
  • Tumors that do not respond to immunotherapy create barriers that hinder T-cell effectiveness, so improving T-cell movement into these tumors could enhance treatment success.
  • Advanced in-vitro models can mimic the complex conditions of tumors, making research findings more applicable to real patient scenarios.
  • The study introduced a new scalable microfluidic assay that allows researchers to examine T-cell movement and function in 3D tumor environments, providing insights crucial for developing better cancer immunotherapy strategies.
View Article and Find Full Text PDF

Lung cancer is a leading cause of death worldwide, with only a fraction of patients responding to immunotherapy. The correlation between increased T-cell infiltration and positive patient outcomes has motivated the search for therapeutics promoting T-cell infiltration. While transwell and spheroid platforms have been employed, these models lack flow and endothelial barriers, and cannot faithfully model T-cell adhesion, extravasation, and migration through 3D tissue.

View Article and Find Full Text PDF

Nrf2, a master regulator of the phase II gene response to stress, is kept at low concentrations in the cell through binding to Keap1, an adaptor protein for the Cul3 ubiquitin ligase complex. To identify Nrf2 activators, two separate time-resolved fluorescence resonance energy transfer (TR-FRET) assays were developed to monitor the binding of Nrf2-Keap1 and Cul3-Keap1, respectively. The triterpenoid, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) and its analogs, exhibited approximately 100-fold better potency in the Cul3-Keap1 assay than in the Nrf2-Keap1 assay, and this difference was more profound at 37 °C than at room temperature in the Nrf2-Keap1 assay, but this phenomenon was not observed in the Cul3-Keap1 assay.

View Article and Find Full Text PDF

NOD1 is an intracellular pattern recognition receptor that recognizes diaminopimelic acid (DAP), a peptidoglycan component in gram negative bacteria. Upon ligand binding, NOD1 assembles with receptor-interacting protein (RIP)-2 kinase and initiates a signaling cascade leading to the production of pro-inflammatory cytokines. Increased NOD1 signaling has been associated with a variety of inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility.

View Article and Find Full Text PDF

NOD2 is an intracellular pattern recognition receptor that assembles with receptor-interacting protein (RIP)-2 kinase in response to the presence of bacterial muramyl dipeptide (MDP) in the host cell cytoplasm, thereby inducing signals leading to the production of pro-inflammatory cytokines. The dysregulation of NOD2 signaling has been associated with various inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. To identify inhibitors of the NOD2 signaling pathway, we utilized a cell-based screening approach and identified a benzimidazole diamide compound designated GSK669 that selectively inhibited an MDP-stimulated, NOD2-mediated IL-8 response without directly inhibiting RIP2 kinase activity.

View Article and Find Full Text PDF