Publications by authors named "D W Lindle"

Direct measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.

View Article and Find Full Text PDF

Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms.

View Article and Find Full Text PDF

We present a series of photoabsorption and partial-ion-yield experiments on thionyl chloride, SOCl(2), at both the sulfur and chlorine K edges. The photoabsorption results exhibit better resolution than previously published data, leading to alternate spectral assignments for some of the features, particularly in the Rydberg-series region. Based on measured fragmentation patterns, we suggest the LUMO, of a(') character, is delocalized over the entire molecular skeleton.

View Article and Find Full Text PDF

Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering.

View Article and Find Full Text PDF

We experimentally observed interference effects in elastic x-ray scattering from gas-phase HCl in the vicinity of the Cl K edge. Comparison to theory identifies these effects as interference effects between non-resonant elastic Thomson scattering and resonant Raman scattering. The results indicate the non-resonant Thomson and resonant Raman contributions are of comparable strength.

View Article and Find Full Text PDF