Publications by authors named "D W Koppenaal"

The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed.

View Article and Find Full Text PDF

Just over a decade ago, a truly outside-of-the-box approach to isotope ratio mass spectrometry (IRMS) was undertaken between research groups at Clemson University and the Pacific Northwest National Laboratory. The original motivation dealt with projections as to whether or not microplasmas could be developed into practical elemental ionization sources, perhaps for transportable analysis applications. In particular, the use of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) was pursued.

View Article and Find Full Text PDF

Many fields of basic and applied sciences, including geochronology, astronomy, metabolism, etc., rely on the ability of mass spectrometry to obtain isotope ratio measurements having a high degree of certainty. The inability to resolve difficult isobaric interferences plagues certain measurements.

View Article and Find Full Text PDF

In a world where information-rich methods of analysis are often sought over those with superior figures of merit, there is a constant search for ionization methods which can be applied across diverse analytical systems. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) is a microplasma device which has the inherent capabilities to operate as a combined atomic and molecular (CAM) ionization source. The plasma is sustained by placement of a high voltage (~500 V, dc) onto an electrolytic solution through which the analyte is generally delivered to the discharge.

View Article and Find Full Text PDF

The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure.

View Article and Find Full Text PDF