The signaling pathway mediating modulation of Na(+)-ATPase of proximal tubule cells by atrial natriuretic peptides (ANP) and urodilatin through receptors located in luminal and basolateral membranes (BLM) is investigated. In isolated BLM, 10(-11)M ANP or 10(-11)M urodilatin inhibited the enzyme activity (50%). Immunodetection revealed the presence of NPR-A in BLM and LLC-PK1 cells.
View Article and Find Full Text PDFWe showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a D-ala(7)-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPbetaS, an inhibitor of trimeric G protein and Gs polyclonal antibody.
View Article and Find Full Text PDFWe show that MDCK I cells express, besides the classical (Na(+)+K(+))ATPase, a Na(+)-stimulated ATPase activity with the following characteristics: (1) K(0.5) for Na(+) 7.5+/-1.
View Article and Find Full Text PDFIn the present paper we studied the effect of urodilatin and atrial natriuretic peptide (ANP) on the proximal tubule Na+-ATPase and (Na+K+)ATPase activities. Urodilatin and ANP inhibit the Na+-ATPase activity but not the (Na+K+)ATPase activity. Maximal effect was observed at a concentration of 10(-11) M for both peptides.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2002
In addition to the (Na(+)+K(+))ATPase another P-ATPase, the ouabain-insensitive Na(+)-ATPase has been observed in several tissues. In the present paper, the effects of ligands, such as Mg(2+), MgATP and furosemide on the Na(+)-ATPase and its modulation by pH were studied in the proximal renal tubule of pig. The principal kinetics parameters of the Na(+)-ATPase at pH 7.
View Article and Find Full Text PDF