Piezoelectric actuators are indispensable over a wide range of industries for their fast response and precise displacement. Most commercial piezoelectric actuators contain lead, posing environmental challenges. We show that a giant strain (1.
View Article and Find Full Text PDFMagnetoelectric (ME) power efficiency is a more important property than the ME voltage or the current coefficients for power conversion applications. This paper introduces an analytical model that describes the relation between the external magnetic field and the power efficiency in layered ME composites. It is a two-phase model.
View Article and Find Full Text PDFConfirming the origin of Gilbert damping by experiment has remained a challenge for many decades, even for simple ferromagnetic metals. Here, we experimentally identify Gilbert damping that increases with decreasing electronic scattering in epitaxial thin films of pure Fe. This observation of conductivitylike damping, which cannot be accounted for by classical eddy-current loss, is in excellent quantitative agreement with theoretical predictions of Gilbert damping due to intraband scattering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Control of coupling between electric and elastic orders in ferroelectric bulks is vital to understand their nature and enrich the multifunctionality of polarization manipulation applied in domain-based electronic devices such as ferroelectric memories and data storage ones. Herein, taking (1 - %)Pb(MgNb)O-%PbTiO (PMN-%PT, = 32, 40) as the prototype, we demonstrate the less-explored mechanical switching in relaxor ferroelectric single crystals using scanning probe microscopy. Low mechanical forces can induce metastable and electrically erasable polarization reversal clearly from electrical-created bipolar domains around the 180° domain wall in monoclinic PMN-32%PT and inside the c+ domain in tetragonal PMN-40%PT.
View Article and Find Full Text PDFMagneto-elasto-electric (ME) coupling heterostructures, consisting of piezoelectric layers bonded to magnetostrictive ones, provide for a new class of electromagnetic emitter materials on which a portable (area ~ 16 cm²) very low frequency (VLF) transmitter technology could be developed. The proposed ME transmitter functions as follows: (a) a piezoelectric layer is first driven by alternating current AC electric voltage at its electromechanical resonance (EMR) frequency, (b) subsequently, this EMR excites the magnetostrictive layers, giving rise to magnetization change, (c) in turn, the magnetization oscillations result in oscillating magnetic fields. By Maxwell's equations, a corresponding electric field, is also generated, leading to electromagnetic field propagation.
View Article and Find Full Text PDF