Publications by authors named "D Vertommen"

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

While the cohesin complex is a key player in genome architecture, how it localizes to specific chromatin sites is not understood. Recently, we and others have proposed that direct interactions with transcription factors lead to the localization of the cohesin-loader complex (NIPBL/MAU2) within enhancers. Here, we identify two clusters of LxxLL motifs within the NIPBL sequence that regulate NIPBL dynamics, interactome, and NIPBL-dependent transcriptional programs.

View Article and Find Full Text PDF

HYlight is a genetically encoded fluorescent biosensor that ratiometrically monitors fructose 1,6-bisphosphate (FBP), a key glycolytic metabolite. Given the role of glucose in liver cancer metabolism, we expressed HYlight in human liver cancer cells and primary mouse hepatocytes. Through , , and experiments, we showed HYlight's ability to monitor FBP changes linked to glycolysis, not gluconeogenesis.

View Article and Find Full Text PDF

Recent approaches of regenerative reproductive medicine investigate the decellularized extracellular matrix to develop a transplantable engineered ovary (TEO). However, a full proteomic analysis is not usually performed after the decellularization process to evaluate the preservation of the extracellular matrix (ECM). In this study, the ECM of the bovine ovarian cortex was analyzed before and after decellularization using mass spectrometry and bioinformatics.

View Article and Find Full Text PDF

Stress granules (SG) are membraneless ribonucleoprotein-based cytoplasmic organelles that assemble in response to stress. Their formation is often associated with an almost global suppression of translation, and the aberrant assembly or disassembly of these granules has pathological implications in neurodegeneration and cancer. In cancer, and particularly in the presence of oncogenic KRAS mutations, in vivo studies concluded that SG increase the resistance of cancer cells to stress.

View Article and Find Full Text PDF