The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.
View Article and Find Full Text PDFElectrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.
View Article and Find Full Text PDFElectrochemical oxygen reduction is a promising and sustainable alternative to the current industrial production method for hydrogen peroxide (HO), which is a green oxidant in many (emerging) applications in the chemical industry, water treatment, and fuel cells. Low solubility of O in water causes severe mass transfer limitations and loss of HO selectivity at industrially relevant current densities, complicating the development of practical-scale electrochemical HO synthesis systems. We tested a flow-by and flow-through configuration and suspension electrodes in an electrochemical flow cell to investigate the influence of electrode configuration and flow conditions on mass transfer and HO production.
View Article and Find Full Text PDFCO conversion is an important part of the transition towards clean fuels and chemicals. However, low solubility of CO in water and its slow diffusion cause mass transfer limitations in aqueous electrochemical CO reduction. This significantly limits the partial current densities towards any desired CO-reduction product.
View Article and Find Full Text PDFDense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer.
View Article and Find Full Text PDF