Publications by authors named "D Verdier-Pinard"

Chloroquine resistance (CQR) in Plasmodium falciparum is associated with mutations in the digestive vacuole transmembrane protein PfCRT. However, the contribution of individual pfcrt mutations has not been clarified and other genes have been postulated to play a substantial role. Using allelic exchange, we show that removal of the single PfCRT amino-acid change K76T from resistant strains leads to wild-type levels of CQ susceptibility, increased binding of CQ to its target ferriprotoporphyrin IX in the digestive vacuole and loss of verapamil reversibility of CQ and quinine resistance.

View Article and Find Full Text PDF

Microtubule-stabilizing agents are increasingly studied for cancer treatment based largely on the prior success of paclitaxel and docetaxel. In this review, we focus on the clinical development of epothilones and discodermolide, and we discuss salient preclinical and clinical highlights of these two novel natural products. These agents are distinguished by their biochemical features making them poor P-glycoprotein substrates and capable of inducing cytotoxicity in cell lines or in vivo tumor models harboring mutations in tubulin.

View Article and Find Full Text PDF

Plasmodium falciparum malaria is increasingly difficult to treat and control due to the emergence of parasite resistance to the major antimalarials, notably chloroquine. Recent work has shown that the chloroquine resistance phenotype can be conferred by multiple amino acid mutations in the parasite digestive vacuole transmembrane protein PfCRT. Here, we have addressed whether chloroquine resistance can also be affected by changes in expression levels of this protein.

View Article and Find Full Text PDF

Plasmodium falciparum chloroquine resistance is a major cause of worldwide increases in malaria mortality and morbidity. Recent laboratory and clinical studies have associated chloroquine resistance with point mutations in the gene pfcrt. However, direct proof of a causal relationship has remained elusive and most models have posited a multigenic basis of resistance.

View Article and Find Full Text PDF

Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10-100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry.

View Article and Find Full Text PDF