Publications by authors named "D Veiga-Canuto"

Purpose To evaluate the reproducibility of radiomics features extracted from T2-weighted MR images in patients with neuroblastoma. Materials and Methods A retrospective study included 419 patients (mean age, 29 months ± 34 [SD]; 220 male, 199 female) with neuroblastic tumors diagnosed between 2002 and 2023, within the scope of the PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers (ie, PRIMAGE) project, involving 746 T2/T2*-weighted MRI sequences at diagnosis and/or after initial chemotherapy. Images underwent processing steps (denoising, inhomogeneity bias field correction, normalization, and resampling).

View Article and Find Full Text PDF

This review paper presents the practical development of imaging biomarkers in the scope of the PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers) project, as a noninvasive and reliable way to improve the diagnosis and prognosis in pediatric oncology. The PRIMAGE project is a European multi-center research initiative that focuses on developing medical imaging-derived artificial intelligence (AI) solutions designed to enhance overall management and decision-making for two types of pediatric cancer: neuroblastoma and diffuse intrinsic pontine glioma. To allow this, the PRIMAGE project has created an open-cloud platform that combines imaging, clinical, and molecular data together with AI models developed from this data, creating a comprehensive decision support environment for clinicians managing patients with these two cancers.

View Article and Find Full Text PDF

Objectives: To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort.

Methods: An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy).

View Article and Find Full Text PDF

Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed.

View Article and Find Full Text PDF