Publications by authors named "D V Ushakov"

We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue.

View Article and Find Full Text PDF

Background: Elicitation of allergic contact dermatitis (ACD), an inflammatory type 4 hypersensitivity disease, induces skin infiltration by polyclonal effector CD8 αβ T cells and precursors of tissue-resident memory T (T) cells. Because T have long-term potential to contribute to body-surface immunoprotection and immunopathology, their local regulation needs a fuller understanding.

Objective: We sought to investigate how T-cell maturation might be influenced by innate-like T cells pre-existing within many epithelia.

View Article and Find Full Text PDF

Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection.

View Article and Find Full Text PDF

Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures.

View Article and Find Full Text PDF