Publications by authors named "D V Rasicci"

Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity ( ) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal ( ).

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is characterized by impaired cardiac function due to myocardial hypo-contractility and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super relaxed" state (SRX), which is further stabilized by a structural state known as the "Interacting Heads Motif" (IHM). Therefore, hypo-contractility of DCM myocardium may result from: 1) reduced function of individual myosin, and/or; 2) decreased myosin availability due to increased IHM/SRX stabilization.

View Article and Find Full Text PDF

Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (3-fold) the maximum steady-state actin-activated ATPase activity () and decreases (6-fold) the actin concentration at which ATPase is one-half maximal ().

View Article and Find Full Text PDF

Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity.

View Article and Find Full Text PDF