Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions.
View Article and Find Full Text PDFThe latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li-Si alloying process.
View Article and Find Full Text PDFNon-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
The interphase layer that forms on either the anode or the cathode is considered to be one of the critical components of a high performing battery. This solid-electrolyte interphase (SEI) layer determines the stability of the electrode in the presence of a given electrolyte as well as the internal resistance of a battery, and hence the overpotential of a cell. In the case of lithium ion batteries where carbonate based electrolytes are used, additives including hexafluorophosphate (PF), bis-trifluoromethylsulfonimide (TFSI), (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI), and fluorosulfonimde (FSI) are used to obtain favorable SEI layers.
View Article and Find Full Text PDFDeveloping facile routes for fabricating highly efficient oxygen evolution reaction (OER) electrocatalysts is in great demand but remains a great challenge. Herein, a novel molten salt decomposition method to prepare 3D metal nitrate hydroxide (MNH, M = Ni, Co, and Cu) nanoarrays homogenously grown on different conductive substrates, especially on nickel foam (NF) for OER applications, is reported. Compared with the as-prepared CoNH/NF and CuNH/NF, NiNH/NF presents a superior electrocatalytic OER activity and stability in an alkaline solution, with a very low overpotential of only 231 mV versus a reversible hydrogen electrode to deliver a geometrical catalytic current density of 50 mA cm and a low Tafel slope of 81 mV dec , outperforming most reported transition metal compound catalysts.
View Article and Find Full Text PDF