Publications by authors named "D V Novikov"

Unlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates the initiation rates of Teriparatide, a medication that can help older women with osteoporotic pelvic fractures, at a hospital, noting a significant gap where 93% of eligible patients did not receive it.
  • - Researchers conducted a chart review of 118 elderly female patients with stable lateral compression pelvic fractures, finding that only a small percentage were evaluated for or prescribed Teriparatide despite its documented benefits.
  • - The study highlights that while orthopedic services recommended Teriparatide in all cases, the actual initiation of treatment was low due to insufficient evaluations and insurance barriers, emphasizing the need for improved actions in managing these injuries.
View Article and Find Full Text PDF
Article Synopsis
  • 2D materials, such as transition metal-dichalcogenides like MoS, have gained significant attention for their unique layered structures, which lead to distinct physicochemical properties when isolated as single layers compared to their bulk forms.
  • The ability to stack and twist these layers creates new phenomena, such as Moiré patterns, while misfit layer compounds (MLCs) introduce unconventional lattice structures that allow for the formation of nanotubes.
  • The stability and behavior of these nanostructures, particularly under elevated temperatures, are important aspects that remain underexplored, prompting studies using advanced techniques like electron microscopy and synchrotron-based X-ray methods to understand their decomposition and recrystallization processes.
View Article and Find Full Text PDF

Purpose: The nonmonotonic dependence of diffusion kurtosis on diffusion time has been observed in biological tissues, yet its relation to membrane integrity and cellular geometry remains to be clarified. Here we establish and explain the characteristic asymmetric shape of the kurtosis peak. We also derive the relation between the peak time , when kurtosis reaches its maximum, and tissue parameters.

View Article and Find Full Text PDF