Publications by authors named "D V Korchagin"

In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a - or -position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the -position of the nitrene group, with ZFS parameters = 0.

View Article and Find Full Text PDF

A previously unknown class of fluorophores was discovered, which represents 14-membered bridgehead heterocycles, pyrrolyl-diazabicyclo[8.3.1]tetradecadienones, herein referred to as PY-14-ONEs.

View Article and Find Full Text PDF

The high power-conversion efficiencies of hybrid perovskite solar cells encourage many researchers. However, their limited photostability represents a serious obstacle to the commercialization of this promising technology. Herein, we present an efficient method for improving the intrinsic photostability of a series of commonly used perovskite material formulations such as MAPbI, FAPbI, CsFAPbI, and CsMAFAPbI through modification with octenidine dihydroiodide (), which is a widely used antibacterial drug with two substituted pyridyl groups and two cationic centers in its molecular framework.

View Article and Find Full Text PDF

The theory of the magnetic coupling between the localized spins, mediated by the mobile excess electron, is generalized to the case of a trigonal, six-center, four-electron molecule with partial valence delocalization. The combination of the electron transfer occurring within the valence-delocalized subsystem and the interatomic exchange producing coupling of the spin of the mobile electron of valence-delocalized fragment with the three localized spins forming the valence-localized subsystem leads to the appearance of a special kind of double exchange (DE), termed the "external core double exchange" (ECDE), in order to distinguish such DE from the conventional "internal core double exchange" for which the mobile electron is coupled with the spin-cores on the same center via the intra-atomic exchange. The effect of the ECDE on the ground spin state of the considered trigonal molecule is compared with earlier reported effect produced by DE in the four-electron, mixed-valence (MV) trimer.

View Article and Find Full Text PDF

Synthesis and magnetic characterization of a family of cobalt-dioxolene complexes [(MeTPA)Co(36-DBCat)] (1), [(MeTPA)Co(36-DBCat)](PF) (2) and [(MeTPA)Co(diox-(OMe))](BPh) (3) (MeTPA = bis(6-methyl-2-pyridyl)methyl-(2-pyridylmethyl)amine; 36-DBCat = dianion of 3,6-di--butylcatechol; diox-(OMe) - 2,5-di--butyl-3,3,4-trimethoxy-6-oxocyclohexa-1,4-dienolate) is reported. The neutral complex 1 is found to form hexa- (CoON, 1a) and pentacoordinated (CoON, 1b) isomers. Variable temperature single crystal X-ray diffraction analysis of 1a and 1b clearly indicates the presence of the high-spin divalent metal ion and the dianionic catecholate form of the dioxolene ligand.

View Article and Find Full Text PDF