The prodigiosin preparation was isolated and purified from Serratia marcescens ATCC 9986, using chromatographic methods. The analysis of the preparation by TLC, NMR-spectrometry and mass-spectrometry allowed to confirm the red pigment fraction as the prodigiosin and detect its purity. Originally, the specific features of the toxic and genotoxic effects of prodigiosin and the possibility of induction of mutations by pigment in the cells of Salmonella typhimurium TA 100 (Ames test) and chromosome damage of mammalian erythroblasts have been determined.
View Article and Find Full Text PDFThe study of the accumulation pattern of extracellular proteins with chitinase activity in the parent Serratia marcescens strain Bú 211 (ATCC 9986) grown in the presence of mitomycin C and its mutant strain with the constitutive synthesis of chitinases grown in the absence of the inducer showed that chitinase activity appeared in the culture liquids of both strains at the end of the exponential phase (4 h of growth) and reached a maximum in the stationary phase (18-20 h of growth). The analysis of the culture liquids (12 h of growth) by denaturing electrophoresis in PAAG followed by the protein renaturation step revealed the presence of four extracellular proteins with chitinase activity and molecular masses of 21, 38, 52, and 58 kDa.
View Article and Find Full Text PDFCell-free preparations of Proteus mirabilis contained a phosphatase (EC 3.1.3.
View Article and Find Full Text PDFTwo isoforms of nuclease displaying DNase and RNase activities were found in the culture liquid and periplasm of Proteus mirabilis. The enzyme was isolated from the periplasm and then purified to a functionally homogeneous state. The nuclease was equally potent in cleaving denatured and native DNAs by the endonuclease mechanism and was designated Pm endonuclease.
View Article and Find Full Text PDFThe culture liquid and periplasm of Proteus mirabilis contained nuclease, an enzyme with DNase and RNase activities. The nuclease was most actively synthesized in the early exponential and stationary growth phases. Nuclease synthesis was regulated by nucleic acids (induction by substrate) and inorganic phosphate (end-product inhibition).
View Article and Find Full Text PDF