Publications by authors named "D Trojaniello"

Background: Over recent years, interest in the development of smart health technologies aimed at supporting independent living for older populations has increased. The integration of innovative technologies, such as the Internet of Things, wearable technologies, artificial intelligence, and ambient-assisted living applications, represents a valuable solution for this scope. Designing such an integrated system requires addressing several aspects (eg, equipment selection, data management, analytics, costs, and users' needs) and involving different areas of expertise (eg, medical science, service design, biomedical and computer engineering).

View Article and Find Full Text PDF

Pervasive sensing is increasing our ability to monitor the status of patients not only when they are hospitalized but also during home recovery. As a result, lots of data are collected and are available for multiple purposes. If operations can take advantage of timely and detailed data, the huge amount of data collected can also be useful for analytics.

View Article and Find Full Text PDF

Background: The use of miniaturized magneto-inertial measurement units (MIMUs) allows for an objective evaluation of gait and a quantitative assessment of clinical outcomes. Spatial and temporal parameters are generally recognized as key metrics for characterizing gait. Although several methods for their estimate have been proposed, a thorough error analysis across different pathologies, multiple clinical centers and on large sample size is still missing.

View Article and Find Full Text PDF

Early-Onset Ataxia (EOA) and Developmental Coordination Disorder (DCD) are two conditions that affect coordination in children. Phenotypic identification of impaired coordination plays an important role in their diagnosis. Gait is one of the tests included in rating scales that can be used to assess motor coordination.

View Article and Find Full Text PDF

Machine learning methods have been widely used for gait assessment through the estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose and validate a general probabilistic modeling approach for the classification of different pathological gaits. Specifically, the presented methodology was tested on gait data recorded on two pathological populations (Huntington's disease and post-stroke subjects) and healthy elderly controls using data from inertial measurement units placed at shank and waist.

View Article and Find Full Text PDF