Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision.
View Article and Find Full Text PDFIn our paper, we simulated cardiac hypertrophy with the use of shell elements in parametric and echocardiography-based left ventricle (LV) models. The hypertrophy has an impact on the change in the wall thickness, displacement field and the overall functioning of the heart. We computed both eccentric and concentric hypertrophy effects and tracked changes in the ventricle shape and wall thickness.
View Article and Find Full Text PDFInherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6c mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival.
View Article and Find Full Text PDFA series of modelling exercises, based on field tests conducted in the Czech Republic, were carried out by the 'Urban' Working Groups as part of the International Atomic Energy Agency's Environmental Modelling for Radiation Safety II, Modelling and Data for Radiological Impact Assessment (MODARIA) I and MODARIA II international data compilation and model validation programmes. In the first two of these programmes, data from a series of field tests involving dispersion of a radiotracer,Tc, from small-scale, controlled detonations were used in a comparison of model predictions with field measurements of deposition. In the third programme, data from a similar field test, involving dispersion ofLa instead ofTc, were used.
View Article and Find Full Text PDF