Publications by authors named "D Trainer"

Article Synopsis
  • Rare-earth complexes are crucial for separation chemistry and have applications in emission and energy upconversion.
  • Researchers have created 2D rare-earth clusters on a metal surface, allowing for detailed study of their properties using scanning tunneling microscopy.
  • These clusters exhibit high mobility at around 100 K but become stable and self-limiting at 5 K, demonstrating unique mechanical stability and a chiral structure.
View Article and Find Full Text PDF

We investigate the limit of X-ray detection at room temperature on rare-earth molecular films using lanthanum and a pyridine-based dicarboxamide organic linker as a model system. Synchrotron X-ray scanning tunneling microscopy is used to probe the molecules with different coverages on a HOPG substrate. X-ray-induced photocurrent intensities are measured as a function of molecular coverage on the sample, allowing a correlation of the amount of La ions with the photocurrent signal strength.

View Article and Find Full Text PDF

Variable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals ( = 2.

View Article and Find Full Text PDF
Article Synopsis
  • X-rays, discovered in 1895, have diverse applications but typically require large amounts of material for characterization, prompting efforts to reduce material quantity.
  • Researchers have developed a method to analyze the elemental and chemical state of individual atoms, using a specialized tip to detect X-ray-excited currents from iron and terbium atoms.
  • This technique demonstrates atomically localized detection and combines synchrotron X-rays with quantum tunneling, paving the way for advanced experiments to study materials at the single-atom level.
View Article and Find Full Text PDF

We synthesize artificial graphene nanoribbons by positioning carbon monoxide molecules on a copper surface to confine its surface state electrons into artificial atoms positioned to emulate the low-energy electronic structure of graphene derivatives. We demonstrate that the dimensionality of artificial graphene can be reduced to one dimension with proper "edge" passivation, with the emergence of an effectively gapped one-dimensional nanoribbon structure. These one-dimensional structures show evidence of topological effects analogous to graphene nanoribbons.

View Article and Find Full Text PDF