Objective: There has been recent clinical interest in the use of vagus nerve stimulation (VNS) for treating gastrointestinal disorders as an alternative to drugs or gastric electrical stimulation. However, effectiveness of burst stimulation has not been demonstrated. We investigated the ability of bursting and continuous VNS to influence gastric and pyloric activity under a range of stimulation parameters and gastric pressures.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is an emerging treatment option for a myriad of medical disorders, where the method of delivering electrical pulses can vary depending on the clinical indication. In this study, we investigated the relative effectiveness of electrically activating the cervical vagus nerve among three different approaches: nerve cuff electrode stimulation (NCES), transcutaneous electrical nerve stimulation (TENS), and enhanced TENS (eTENS). The objectives were to characterize factors that influenced nerve activation and to compare the nerve recruitment properties as a function of nerve fiber diameter.
View Article and Find Full Text PDFComputational studies can be used to support the development of peripheral nerve interfaces, but currently use simplified models of nerve anatomy, which may impact the applicability of simulation results. To better quantify and model neural anatomy across the population, we have developed an algorithm to automatically reconstruct accurate peripheral nerve models from histological cross-sections. We acquired serial median nerve cross-sections from human cadaveric samples, staining one set with hematoxylin and eosin (H&E) and the other using immunohistochemistry (IHC) with anti-neurofilament antibody.
View Article and Find Full Text PDFObjective: Electrical neuromodulation is a clinically effective therapeutic instrument, currently expanding into newer indications and larger patient populations. Neuromodulation technologies are also moving towards less invasive approaches to nerve stimulation. In this study, we investigated an enhanced transcutaneous electrical nerve stimulation (eTENS) system that electrically couples a conductive nerve cuff with a conventional TENS electrode.
View Article and Find Full Text PDF