Publications by authors named "D Torrents"

The interoperability of variant identification pipelines is fundamental for achieving consistent clinical care across oncology research centers and hospitals. Here, we present a protocol for using ONCOLINER, a platform for the assessment, improvement, and harmonization of somatic variant discovery of multiple pipelines. We describe steps for acquiring benchmarking datasets and executing the user variant calling pipeline.

View Article and Find Full Text PDF

The characterization of somatic genomic variation associated with the biology of tumors is fundamental for cancer research and personalized medicine, as it guides the reliability and impact of cancer studies and genomic-based decisions in clinical oncology. However, the quality and scope of tumor genome analysis across cancer research centers and hospitals are currently highly heterogeneous, limiting the consistency of tumor diagnoses across hospitals and the possibilities of data sharing and data integration across studies. With the aim of providing users with actionable and personalized recommendations for the overall enhancement and harmonization of somatic variant identification across research and clinical environments, we have developed ONCOLINER.

View Article and Find Full Text PDF

Two independent exome sequencing initiatives aimed to identify new genes involved in the predisposition to nonpolyposis colorectal cancer led to the identification of heterozygous loss-of-function variants in NPAT, a gene that encodes a cyclin E/CDK2 effector required for S phase entry and a coactivator of histone transcription, in two families with multiple members affected with colorectal cancer. Enrichment of loss-of-function and predicted deleterious NPAT variants was identified in familial/early-onset colorectal cancer patients compared to non-cancer gnomAD individuals, further supporting the association with the disease. Previous studies in Drosophila models showed that NPAT abrogation results in chromosomal instability, increase of double strand breaks, and induction of tumour formation.

View Article and Find Full Text PDF

One of the main goals of human genetics is to understand the connections between genomic variation and the predisposition to develop a complex disorder. These disease-variant associations are usually studied in a single independent manner, disregarding the possible effect derived from the interaction between genomic variants. In particular, in a background of complex diseases, these interactions can be directly linked to the disorder and may play an important role in disease development.

View Article and Find Full Text PDF